1. bookVolume 40 (2021): Issue 4 (December 2021)
Journal Details
First Published
24 Aug 2013
Publication timeframe
4 times per year
access type Open Access

Prediction of Soc in Calcic Chernozem in the Steppe Zone of Ukraine Using Brightness and Colour Indicators

Published Online: 23 Dec 2021
Page range: 325 - 336
Received: 15 Apr 2021
Accepted: 28 Jul 2021
Journal Details
First Published
24 Aug 2013
Publication timeframe
4 times per year

Soil organic carbon (SOC) is an important component of any soil which determines many of its properties. Nowadays, more and more attention is being paid to the SOC content determination in soils by not using the conventional, time-consuming and expensive technique, but by using colour image processing of soil samples. In this case, even the camera of modern smartphones can be used as an image source, making this technique very convenient and practical. However, it is important to maintain certain standardised conditions (light intensity, light incidence angle, etc.) when capturing the images of soil samples. In our opinion, it is best to use a regular scanner for this purpose, with subsequent image processing by graphic programs (e.g., Adobe Photoshop). To increase the reliability of the colour information obtained in this way, it is desired (if possible) to use a spectrograph or a monochromator in the subsequent calculation of reflection or brightness ratios. It is these two approaches that we have implemented in our work. As a result of the experiment, the values of brightness ratios (at 480, 650 and 750 nm wavelengths and integral brightness ratio), colour indicators (the hue, saturation and value [HSV], red, green and blue [RGB], CIE L*a*b* and cyan, magenta, yellow and key [CMYK] systems) and SOC content in Calcic Chernozem samples of the steppe zone of Ukraine were obtained. Using correlation analysis of the dataset, the existence of direct (r = 0.88–0.90) and inverse close relationships (r = −0.75–0.90) between SOC, values of brightness ratios and colour indicators of the soil samples were established. This allows us to develop predictive models. Statistical analysis showed that the models were significant when they were based on the values of brightness ratios at 650 nm wavelength, integral brightness ratio, V indicator in HSV system, R, G and B indicators in RGB system, C, M and K indicators in CMYK system and L* and b* indicators in L*a*b* system. The subsequent calculation of variation coefficients showed that the largest variability was observed in SOC indicators (CV = 0.72) and slightly less variability in the K index of CMYK system and brightness ratio values at 650 nm wavelength (CV = 0.67 and 0.53, respectively). Based on this, we believe that the models y = 0.0188 + 0.0535*x (x is the value of the K index in CMYK system) and y = 5.0716 – 3.2255*log10(x) (x is the value of brightness ratio at 650 nm wavelength) were the most statistically significant and promising parameters for determining SOC content (y in these equations) in Calcic Chernozem samples of the steppe zone of Ukraine.


Aitkenhead, M.J., Coull, M., Towers, W., Hudson, G. & Black H.I.J. (2013). Prediction of soil characteristics and colour using data from the National Soils Inventory of Scotland. Geoderma, 200−201, 99–107. DOI: 10.1016/j.geoderma.2013. Search in Google Scholar

Baliuk, S., Medvediev, V., Kucher, A., Solovej, V., Levin, A. & Kolmaz J. (2017). Control over organic carbon of soil in a context of food safety and climate fluctuation (in Ukrainian). Visnyk Agrarnoi Nauky, 95(9), 11–18. DOI: 10.31073/agrovisnyk201709-02.10.31073/agrovisnyk201709-02 Search in Google Scholar

Bilova, N.A. & Travleev A.P. (1999). Natural forest and grassland soils (in Russian). Dnepropetrovsk: DNU. Search in Google Scholar

Borrelli, P., Robinson, D. A., Fleischer, L. R., Lugato, E., Ballabio, C., Alewell, C., Meusburger, K., Modugno, S., Schütt, B., Ferro, V., Bagarello, V., Oost, K.V., Montanarella, L. & Panagos P. (2017). An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications, 8(1). DOI: 10.1038/s41467-017-02142-7.10.1038/s41467-017-02142-7 Search in Google Scholar

Bozhko, K. & Bilova N. (2020). The influence of the slope exposure on the soil aggregation and structure, water stability of aggregates, and eco-aggregation and structure, water stability of aggregates, and ecological microstructure formation of the ravine forest soils in Pre-Dnipro Region (Ukraine). Ekológia (Bratislava), 39(2), 116–129. DOI: 10.2478/eko-2020-0009.10.2478/eko-2020-0009 Search in Google Scholar

Carter, M.R. & Gregorich E.G. (2008). Soil sampling and methods of analysis. Boca Raton: CRC Press. Search in Google Scholar

Chang, C.-W. & Laird D.A. (2002). Near-infrared reflectance spectroscopic analysis of soil C and N. Soil Sci., 167(2), 110–116. DOI: 10.1097/00010694-200202000-00003.10.1097/00010694-200202000-00003 Search in Google Scholar

Chazdon, R. & Brancalion P. (2019). Restoring forests as a means to many ends. Science, 365(6448), 24–25. DOI: 10.1126/science.aax9539.10.1126/science.aax9539 Search in Google Scholar

Costa, J.J.F., Giasson, É., da Silva, E.B., Coblinski, J.A. & Tiecher T. (2020). Use of color parameters in the grouping of soil samples produces more accurate predictions of soil texture and soil organic carbon. Comput. Electron. Agric., 177, 105710. DOI: 10.1016/j.compag.2020.105710.10.1016/j.compag.2020.105710 Search in Google Scholar

Crowther, T.W., Todd-Brown, K.E.O., Rowe, C.W., Wieder, W.R., Carey, J.C., MacHmuller, M.B., Snoek, B.L., Fang, S., Zhou, G., Allison, S.D., Blair, J.M., Bridgham, S.D., Burton, A.J., Carrillo, Y., Reich, P.B., Clark, J.S., Classen, A.T., Dijkstra, F.A., Elberling, B., Emmett, B.A., Estiarte, M., Frey, S.D., Guo, J., Harte, J., Jiang, L., Johnson, B.R., Kroël-Dulay, G., Larsen, K.S., Laudon, H., Lavallee, J.M., Luo, Y., Lupascu, M., Ma, L.N., Marhan, S., Michelsen, A., Mohan, J., Niu, S., Pendall, E., Peñuelas, J., Pfeifer-Meister, L., Poll, C., Reinsch, S., Reynolds, L.L., Schmidt, I.K., Sistla, S., Sokol, N.W., Templer, P.H., Treseder, K.K., Welker, J.M. & Bradford M.A. (2016). Quantifying global soil carbon losses in response to warming. Nature, 540(7631), 104–108. DOI: 10.1038/nature20150.10.1038/nature20150 Search in Google Scholar

Dalal, R.C., Thornton, C.M., Allen, D.E. & Kopittke P.M. (2021). A study over 33 years shows that carbon and nitrogen stocks in a subtropical soil are increasing under native vegetation in a changing climate. Sci. Total Environ., 772, 145019. DOI: 10.1016/j.scitotenv.2021.145019.10.1016/j.scitotenv.2021.145019 Search in Google Scholar

De Moraes Sá, J.C., Potma Gonçalves, D.R., Ferreira, L.A., Mishra, U., Inagaki, T.M., Ferreira Furlan, F.J., Moro, R.S., Floriani, N., Briedis, C. & de Oliveira Ferreira A. (2018). Soil carbon fractions and biological activity based indices can be used to study the impact of land management and ecological successions. Ecological Indicators, 84, 96–105. DOI: 10.1016/j.ecolind.2017. Search in Google Scholar

Doetterl, S., Stevens, A., Six, J., Merckx, R., Oost, K. Van, Pinto, M.C., Casanova-katny, A., Muñoz, C., Boudin, M., Venegas, E.Z. & Boeckx P. (2015). Soil carbon storage controlled by interactions between geochemistry and climate. Nature Geoscience, 8(10), 780–783. DOI: 10.1038/ngeo2516.10.1038/ngeo2516 Search in Google Scholar

Fontaine, S., Barot, S., Barré, P., Bdioui, N., Mary, B. & Rumpel C. (2007). Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature, 450(7167), 277–280. DOI: 10.1038/nature06275.10.1038/nature06275 Search in Google Scholar

Fu, Y., Taneja, P., Lin, S., Ji, W., Adamchuk, V., Daggupati, P. & Biswas A. (2020). Predicting soil organic matter from cellular phone images under varying soil moisture. Geoderma, 361, 114020. DOI: 10.1016/j.geoderma.2019.114020.10.1016/j.geoderma.2019.114020 Search in Google Scholar

Gholizadeh, A., Saberioon, M., Viscarra Rossel, R.A., Boruvka, L. & Klement A. (2020). Spectroscopic measurements and imaging of soil colour for field scale estimation of soil organic carbon. Geoderma, 357, 113972. DOI: 10.1016/j.geoderma.2019.113972.10.1016/j.geoderma.2019.113972 Search in Google Scholar

Gorban, V.A. (2019). Electrophysical characteristics and dielectric constant of soils of northern natural forests of Ukrainian steppe zone. Fundamental and Applied Soil Science, 19(2), 45–50. DOI: 10.15421/041909.10.15421/041909 Search in Google Scholar

Gorban, V.A. & Boloban A.O. (2019). Features of the structural-aggregate composition of ordinary chernozems under the steppe and forest vegof ordinary chernozems under the steppe and forest vegetation (in Ukrainian). Ecology and Noospherology, 30(2), 74–79. DOI: 10.15421/031913.10.15421/031913 Search in Google Scholar

Gorban, V., Huslystyi, A., Kotovych, O. & Yakovenko V. (2020). Changes in physical and chemical properties of calcic chernozem affected by Robinia pseudoacacia and Quercus robur plantings. Ekológia (Bratislava), 39(1), 27–44. DOI: 10.2478/eko-2020-0003.10.2478/eko-2020-0003 Search in Google Scholar

Gorban, V.A., Khmelenko, O.V., Huslistyj, A.O. & Tetiukha O.G. (2019). Influence of forest vegetation on color, reflectivity and humus content in ordinary chernozems (in Ukrainian). Issues of Steppe Forestry and Forest Reclamation of Soils, 48, 25–37. DOI: 10.15421/441903.10.15421/441903 Search in Google Scholar

Guidelines for soil description (2006). Rome: FAO. Search in Google Scholar

Günal, H., Erşahin, S., Kutlu, T. & Yetgin B. (2007). Differentiation of soil horizons and parent materials by quantified soil color parameters. Agrochimica, 51(1), 86–94. Search in Google Scholar

Han, P., Dong, D., Zhao, X., Jiao, L. & Lang Y. (2016). A smartphone-based soil color sensor: For soil type classification. Comput. Electron. Agric., 123, 232–241. DOI: 10.1016/j.compag.2016. Search in Google Scholar

Horion, S., Ivits, E., De Keersmaecker, W., Tagesson, T., Vogt, J. & Fensholt R. (2019). Mapping European ecosystem change types in response to land-use change, extreme climate events, and land degradation. Land Degrad. Dev., 30(8), 951–963. DOI: 10.1002/ldr.3282.10.1002/ldr.3282 Search in Google Scholar

IUSS Working Group WRB (2015). World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. Search in Google Scholar

Jobbagy, E.G. & Jackson R.B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl., 10, 423–436. DOI: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2. Search in Google Scholar

Kirillova, N.P., Grauer-Gray, J., Hartemink, A.E., Sileova, T.M., Artemyeva, Z.S. & Burova E.K. (2018). New perspectives to use Munsell color charts with electronic devices. Comput. Electron. Agric., 155, 378–385. DOI: 10.1016/j.compag.2018. Search in Google Scholar

Levin, N., Ben-Dor, E. & Singer A. (2005). A digital camera as a tool to measure colour indices and related properties of sandy soils in semi-arid environments. Int. J. Remote Sens., 26(24), 5475–5492. DOI: 10.1080/01431160500099444.10.1080/01431160500099444 Search in Google Scholar

Li, J., Chen, H. & Zhang C. (2020). Impacts of climate change on key soil ecosystem services and interactions in Central Asia. Ecological Indicators, 116, 106490. DOI: 10.1016/j.ecolind.2020.106490.10.1016/j.ecolind.2020.106490 Search in Google Scholar

Liang, C., Schimel, J.P. & Jastrow J.D. (2017). The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2, 17105. DOI: 10.1038/nmicrobiol.2017.105.10.1038/nmicrobiol.2017.105 Search in Google Scholar

Liles, G.C., Beaudette, D.E., O’Geen, A.T. & Horwath W.R. (2013). Developing predictive soil C models for soils using quantitative color measurements. Soil Sci. Soc. Am. J., 77(6), 2173–2181. DOI: 10.2136/sssaj2013.02.0057.10.2136/sssaj2013.02.0057 Search in Google Scholar

Liu, F., Rossiter, D.G., Zhang, G.-L. & Li D.-C. (2020). A soil colour map of China. Geoderma, 379, 114556. DOI: 10.1016/j.geoderma.2020.114556.10.1016/j.geoderma.2020.114556 Search in Google Scholar

López-Díaz, M.L., Benítez, R. & Moreno G. (2017). How do management techniques affect carbon stock in intensive hardwood plantations? For. Ecol. Manag., 389, 228–239. DOI: 10.1016/j.foreco.2016. Search in Google Scholar

Ma, X., Zhu, J., Yan, W. & Zhao C. (2020). Assessment of soil conservation services of four river basins in Central Asia under global warming scenarios. Geoderma, 375, 114533. DOI: 10.1016/j.geoderma.2020.114533.10.1016/j.geoderma.2020.114533 Search in Google Scholar

Morellos, A., Pantazi, X.-E., Moshou, D., Alexandridis, T., Whetton, R., Tziotzios, G., Wiebensohn, J., Bill, R. & Mouazen A.M. (2016). Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy. Biosystems Engineering, 152, 104–116. DOI: 10.1016/j.biosystemseng.2016. Search in Google Scholar

Moritsuka, N., Matsuoka, K., Katsura, K., Sano, S. & Yanai J. (2014). Soil color analysis for statistically estimating total carbon, total nitrogen and active iron contents in Japanese agricultural soils. Soil Sci. Plant Nutr., 60(4), 475–485. DOI: 10.1080/00380768.2014.906295.10.1080/00380768.2014.906295 Search in Google Scholar

Nahirniak, S.V., Dontsova, T.A., Lapinsky, A.V., Tereshkov, M.V. & Singh R.C. (2020). Soil and soil breathing remote moni-toring: A short review. Biosystems Diversity, 28(4), 350–356. DOI: 10.15421/012044.10.15421/012044 Search in Google Scholar

Olifir, Y.M., Habryiel, A.J., Partyka, T.V. & Havryshko O.S. (2020). Carbon dioxide emission and humus status of Albic Stagnic Luvisol under different fertilization regimes. Biosystems Diversity, 28(3), 320–328. DOI: 10.15421/012040.10.15421/012040 Search in Google Scholar

Orlov, D.S., Suchanova, N.I. & Rosanova M.S. (2001). Spectral reflectance of soils and their components (in Russian). Moskva: MSU. Search in Google Scholar

Pechanec, V., Purkyt, J., Benc, A., Nwaogu, C., Štěrbová, L. & Cudlín P. (2018). Modelling of the carbon sequestration and its prediction under climate change. Ecological Informatics, 47, 50–54. DOI: 10.1016/j.ecoinf.2017. Search in Google Scholar

Ramos, P.V., Inda, A.V., Barrón, V., Siqueira, D.S., Marques Júnior, J. & Teixeira D.D.B. (2020). Color in subtropical brazilian soils as determined with a Munsell chart and by diffuse reflectance spectroscopy. Catena, 193, 104609. DOI: 10.1016/j.catena.2020.104609.10.1016/j.catena.2020.104609 Search in Google Scholar

Recio Espejo, J.M., Kotovych, O.V., Díaz del Olmo, F., Gorban, V.A., Cámara Artigas, R., Masyuk, O.M. & Borja Barrera C. (2020). Palaeoecological aspects of an Ukrainian Upper Holocene chernozem. Ecology and Noospherology, 31(2), 59–64. DOI: 10.15421/032009.10.15421/032009 Search in Google Scholar

Rodríguez Martín, J.A., Álvaro-Fuentes, J., Gonzalo, J., Gil, C., Ramos-Miras, J.J., Grau Corbí, J.M. & Boluda R. (2016). Assessment of the soil organic carbon stock in Spain. Geoderma, 264, 117–125. DOI: 10.1016/j.geoder-DOI: 10.1016/j.geoderma.2015.10.010. Search in Google Scholar

Sánchez-Marañón, M., Soriano, M., Melgosa, M., Delgado, G. & Delgado R. (2004). Quantifying the effects of aggregation, particle size and components on the colour of Mediterranean soils. Eur. J. Soil Sci., 55(3), 551–565. DOI: 10.1111/j.1365-2389.2004.00624.x.10.1111/j.1365-2389.2004.00624.x Search in Google Scholar

Simón, T., Zhang, Y., Hartemink, A.E., Huang, J., Walter, C. & Yost J. L. (2020). Predicting the color of sandy soils from Wisconsin, USA. Geoderma, 361, 114039. DOI: 10.1016/j.geoderma.2019.114039.10.1016/j.geoderma.2019.114039 Search in Google Scholar

Swetha, R.K. & Chakraborty S. (2021). Combination of soil texture with Nix color sensor can improve soil organic carbon prediction. Geoderma, 382, 114775. DOI: 10.1016/j.geoderma.2020.114775.10.1016/j.geoderma.2020.114775 Search in Google Scholar

Taneja, P., Vasava, H.K., Daggupati, P. & Biswas A. (2021). Multi-algorithm comparison to predict soil organic matter and soil moisture content from cell phone images. Geoderma, 385, 114863. DOI: 10.1016/j.geoderma.2020.114863.10.1016/j.geoderma.2020.114863 Search in Google Scholar

Torrent, J. & Barrón V. (2015). Diffuse reflectance spectroscopy. In A.L. Ulery &R.L. Drees (Eds.), Methods soil analysis, mineralogical methods (pp. 367–385). SSSA Book Series. DOI: 10.2136/sssabookser5.5.c13.10.2136/sssabookser5.5.c13 Search in Google Scholar

Trigalet, S., Gabarrón-Galeote, M.A., Van Oost, K. & van Wesemael B. (2016). Changes in soil organic carbon pools along a chronosequence of land abandonment in southern Spain. Geoderma, 268, 14–21. DOI: 10.1016/j.geoderma.2016. Search in Google Scholar

Wu, C., Yang, Y. & Xia J. (2017). A simple digital imaging method for estimating black-soil organic matter under visible spectrum. Archives of Agronomy and Soil Science, 63(10), 1346–1354. DOI: 10.1080/03650340.2017.1280728.10.1080/03650340.2017.1280728 Search in Google Scholar

Yakovenko, V. (2017). Fractal properties of coarse/fine-related distribution in forest soils on colluvium. In D. Dent & Y. Dmytruk (Eds.), Soil science working for a living (pp. 29–42). Switzerland: Springer International Publish-ing. DOI: 10.1007/978-3-319-45417-7.10.1007/978-3-319-45417-7 Search in Google Scholar

Zhou, P., Li, M.-Z., Yang, W., Ji, R.-H. & Meng C. (2020). Development of Vehicle-Mounted in-situ soil parameters detector based on NIR Diffuse Reflection. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 40(9), 2856–2861. DOI: 10.3964/j.issn.1000-0593(2020)09-2856-06. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo