1. bookVolume 40 (2021): Issue 4 (December 2021)
Journal Details
License
Format
Journal
eISSN
1337-947X
First Published
24 Aug 2013
Publication timeframe
4 times per year
Languages
English
access type Open Access

Changes in Habitat Conditions of Invaded Forest Communities in Podunajská Nížina and the Impact of Non-Native Species on Biodiversity (SW Slovakia)

Published Online: 23 Dec 2021
Page range: 364 - 378
Received: 04 Mar 2021
Accepted: 19 Jul 2021
Journal Details
License
Format
Journal
eISSN
1337-947X
First Published
24 Aug 2013
Publication timeframe
4 times per year
Languages
English
Abstract

With the phytocenological research of riparian mixed forests and pannonic woods in the Podunajská nížina in 2018 and 2019, we obtained 113 phytocenological relevés of invaded and non-invaded stands. Using the Modified Permutation Test, we derived modified Ellenberg indication values (EIVs) in order to determine statistically significant differences and correlation relationships between diversity indices and EIVs. We recorded 15 invasive species in the stands, for example, Ailanthus altissima, Ambrosia artemisiifolia, Asclepias syriaca, Aster lanceolatus, Helianthus tuberosus, Impatiens parviflora, Negundo aceroides, Solidago canadensis, S. gigantea and Robinia pseudoacacia. We also confirmed the occurrence of species important for conservation: Epipactis helleborine agg., E. voethii, Cephalanthera longifolia, Clematis integrifolia and the like. We tested the statistical significance of EIVs as explanatory variables by redundancy analysis and Monte Carlo permutation test (stepwise selection, number of permutations 499, p < 0.05). In addition to the EIV continentality, the contribution of light, moisture, nutrients, soil reaction and temperature was higher than random. The model explains 20.21% of the variability pursuant to the coefficient of determination (R2), with its adjusted (more accurate) variant (R2adj) capturing 15.70% of the variability of the model. Using the Kruskal–Wallis test, we confirmed the statistically significant differences (p*) in mean values between count of species, Shannon–Wiener index, Simpson dominance index and taxonomic diversity of invaded and non-invaded vegetation. For EIVs, we found significant differences in the mean values for moisture and soil reaction factors. In our model, count of species, Shannon–Wiener index, Simpson dominance index and taxonomic diversity index were positively correlated with invaded stands. Non-invaded stands showed statistically significant negative correlation with the EIVs moisture, soil reaction and nutrients. Biotic indices are appropriate and sensitive metrics for assessing the rate of community invasion. Lowland riparian forests are dynamic ecosystems through the structure of their stands and the dynamics of the nutrient and energy cycle of the river landscape. After disturbance (fire, wind, logging), the high degree of invasibility makes them vulnerable to the infiltration and spread of non-native species, which is a problem, especially in protected areas.

Keywords

Bartko, M. (2018). Atlas of recognized poplar clones in Slovakia - Practical guide (in Slovak). Zvolen: Národné lesnícke centrum – Lesnický výskumný ústav Zvolen. Search in Google Scholar

Bartelheimer, M. & Poschlod P. (2016). Functional characterizations of Ellenberg indicator values – a review on ecophysiological determinants. Funct. Ecol., 30, 506−516. DOI: 10.1111/1365-2435.12531.10.1111/1365-2435.12531 Search in Google Scholar

Bartz, R. & Kowarik I. (2019). Assessing the environmental impacts of invasive alien plants: a review of assessment approaches. NeoBiota, 43, 69−99. DOI: 10.3897/neobiota.43.30122.10.3897/neobiota.43.30122 Search in Google Scholar

Berta, J. (1986). Lowland riparian forests – Ulmenion Oberd. 1953 (in Slovak). In J. Michalko, J. Berta & M. Dezider (Eds.), Geobotanická mapa ČSSR. Slovenská Socialistická Republika. Bratislava: Veda, vydavateľstvo SAV. Search in Google Scholar

Clark, K.R. & Warwick R.M. (1998). A taxonomic distinctness index and its statistical properties. J. Appl. Ecol., 35, 523–531. DOI: 10.1046/j.1365-2664.1998.3540532.x.10.1046/j.1365-2664.1998.3540532.x Search in Google Scholar

DAISE (2019). Inventory of alien invasive species in Europe. https://www.gbif.org/dataset/39f36f10-559b-427f-8c86-2d28afff68ca. Search in Google Scholar

Dyakov, N. & Zhelev P. (2013). Alien species invasion and diversity of riparian forest according to environmental gradients and disturbance regime. Applied Ecology and Environmental Research, 11, 249–272. DOI: 10.15666/aeer/1102_249272.10.15666/aeer/1102_249272 Search in Google Scholar

Dyderski, M.K. & Jagodziński A.M. (2021). Impacts of invasive trees on alpha and beta diversity of temperate forest understories. Biol. Invasions, 23, 235–252. DOI: 10.1007/s10530-020-02367-6.10.1007/s10530-020-02367-6 Search in Google Scholar

EC (2020). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, 2020: EU Biodiversity Strategy for 2030 Bringing nature back into our lives. Brussels: European Commission. https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal/actions-being-taken-eu/eu-biodiversity-strategy-2030_en. Search in Google Scholar

Eliáš, P. jun., Dítě, D., Kliment, J., Hrivnák, R. & Feráková V. (2015). Red list of ferns and flowering plants of Slovakia. Biologia, 70, 218–228. DOI: 10.1515/biolog-2015-0018.10.1515/biolog-2015-0018 Search in Google Scholar

Ellenberg, H., Weber, H.E., Doll, R., Wirth, V., Werner, W. & Paulissen D. (1992). Zeigerwerte von pflanzen in Mitteleuropa. Scripta Geobotanica, 18, 1−248. Search in Google Scholar

Fehér, A. (2007). Historical reconstruction of expansion of non-native plants in the Nitra river basin (SW Slovakia). Kanitzia, 15, 47−62. Search in Google Scholar

Fehér, A. (2018). Vegetation history and cultural landscapes: case studies from South-west Slovakia. Cham: Springer International Publishing AG. DOI: 10.1007/978-3-319-60267-7.10.1007/978-3-319-60267-7 Search in Google Scholar

Fehér, A & Borlea Gh.F. (2018). Two potentially invasive tree species of coppice forests: Ailanthus altissima and Robinia presudoacacia. In A. Unrau, G. Becker, R. Spinelli, D. Lazdina, N. Magagnotti, V.N. Nicolescu, P. Buckley, D. Bartlett & P.D. Kofman (Eds.), Coppice forests in Europe (pp. 63−71). Freiburg i. Br.: Albert Ludwig University of Freiburg. Search in Google Scholar

Gojdičová, E., Cvachová, A. & Karásová E. (2002). List of non-native invasive and expansive vascular plants of Slovakia (in Slovak). Ochrana Prírody, 21, 59–79. Search in Google Scholar

Halarewicz, A., Pruchniewicz, D. & Kawałko D. (2021). Using direct and indirect methods to assess changes in riparian habitats. Forests, 12, 504. DOI: 10.3390/f12040504.10.3390/f12040504 Search in Google Scholar

Hammer, Ø., Harper, D.A.T. & Ryan P.D. (2001). PAST: Paleontological Statistics software packagefor education and data analysis. Paleontologia Electronica, 4, 1−9. https://palaeo-electronica.org/2001_1/past/issue1_01.htm. Search in Google Scholar

Hrivnák, R., Medvecká, J., Baláži, P., Bubíková, K., Oťaheľová, H. & Svitok M. (2019). Alien aquatic plants in Slovakia over 130 years: historical overview, current distribution and future perspectives. NeoBiota, 49, 37–56. DOI: 10.3897/neobiota.49.34318.10.3897/neobiota.49.34318 Search in Google Scholar

Hutárová, D. (2011). Changes in the floristic composition of the stand as a result of disturbance of the riparian forest ecosystem (in Slovak). Životné Prostredie, 45, 212–216. Search in Google Scholar

Chmura, D. & Sierka E. (2006). Relation between invasive plants and species richness of forest floor vegetation: a study of Impatiens parviflora DC. Pol. J. Ecol., 54, 417–428. Search in Google Scholar

Chytrý, M. & Pyšek P. (2009). Where do introduced plants spread? 1. Differences in the invasion of large areas (in Czech). Živa, 1, 11–14. https://ziva.avcr.cz/files/ziva/pdf/kam-se-siri-zavlecene-rostliny-1-rozdily-vinvadov.pdf. Search in Google Scholar

Chytrý, M., Pyšek, P., Tichý, L., Knollová, I. & Danihelka J. (2005). Invasions by alien plants in the Czech Republic: a quantitative assesment across habitats. Preslia, 77, 339–354. Search in Google Scholar

Chytrý, M., Pyšek, P., Wild, J., Pino, J., Maskell, L.C. & Vilà M. (2009). European map of alies plant invasions based on the quantitative assessment across habitats. Divers. Distrib., 15, 98–107. DOI: 10.1111/j.1472-4642.2008.00515.x.10.1111/j.1472-4642.2008.00515.x Search in Google Scholar

Jarolímek, I. (1993). Community with the dominant Impatiens glandulifera, in Slovakia (in Slovak). Bulletin Slovenskej Botanickej Spoločnosti, 15, 30–33. Search in Google Scholar

Jastrzębska, M., Szarejko, T., Hołdyński, C. & Jastrzębski W.P. (2009). Species diversity in grassland communities under different habitat conditions. Polish Journal of Natural Sciences, 24, 43–59. DOI: 10.2478/v10020-009-0005-y.10.2478/v10020-009-0005-y Search in Google Scholar

Jurko, A. (1990). Ecological and socioeconomic evaluation of vegetation (in Slovak). Bratislava: Príroda. Search in Google Scholar

Kanieski, M.R., Longhi S.J. & Soares P.R.C. (2018). Methods for biodiversity assessment: Case study in an area of Atlantic Forest in Southern Brazil. IntechOpen. DOI: 10.5772/intechopen.71824.10.5772/intechopen.71824 Search in Google Scholar

Kočický, D. & Ivanovič B. (2011). Geomorphological division of Slovakia 1: 500 000 (in Slovak), according to E. Mazúr & M. Lukniš (1986). Geomorfologické členenie SSR a ČSSR. Časť Slovensko. Bratislava: Slovenská kartografia. https://apl.geology.sk/mapportal/img/pdf/tm19a.pdf. Search in Google Scholar

Liebhold, A.M., Brockerhoff, E.G., Kalisz, S., Nuñez, M.A., Wardle, D.A. & Wingfiel M.J. (2017). Biological invasions in forest ecosystems. Biol. Invasions, 19, 3437−3458. DOI: 10.1007/s10530-017-1458-5.10.1007/s10530-017-1458-5 Search in Google Scholar

Maarel van der, E. (2005). Vegetation ecology – an overview. In E. van der Maarel. (Ed.), Vegetation ecology (pp. 1−51). Oxford: Blackwell Publishing UK. Search in Google Scholar

Maglocký, Š. (2002). Potential natural vegetation 1: 500,000 (in Slovak). In T. Hrnčiarová (Ed.) et al., Atlas krajiny Slovenskej republiky. Bratislava: MŽP SR, Banská Štiavnica: SAŽP, ESPRIT. Search in Google Scholar

Marhold, K. (1998). Ferns and flowering plants. In K. Marhold & F. Hindák (Eds.), Checklist of non-vascular and vascular plants of Slovakia. Bratis-lava: Veda, vydavateľstvo SAV. Search in Google Scholar

Májeková, M. & Vykoukalová I. (2010). Communities of hard riparian forests of the south - eastern part of the territory of Bratislava (in Slovak). Bulletin Slovenskej Botanickej Spoločnosti, 32, 239−251. Search in Google Scholar

Medvecká, J., Kliment, J., Májeková, J., Halada, Ľ., Zaliberová, M., Gojdičová, E., Feráková, V. & Jarolímek I. (2012). Inventory of the alien flora of Slovakia. Preslia, 84, 257–309. Search in Google Scholar

MoE SR (2003). Decree of the Ministry of the Environment of the Slovak Republic no. 24/2003 Coll., Amending the Decree of the Ministry of the Environment of the Slovak Republic no. 24/2003 Coll., which implements Act no. 543/2002 Coll. on Nature and Landscape Protection, Volume 13/2003, as amended. https://www.zakonypreludi.sk/zz/2003-4. Search in Google Scholar

Moravec, J., Blažeková, D., Hejný, S., Husová, M., Jeník, J., Kolbek, J., Krahulec, F., Krečmer, V., Kropáč, Z., Neuhäusl, R., Neuhäuslová-Novotná, Z., Rybníček, K., Rybníčková, E., Samek, V. & Štěpán J. (1994). Phytocoenology (Vegetation Science) (in Czech). Praha: Academia. Search in Google Scholar

Nicolescu, V., Rédei, K., Mason, W.L., Vor, T., Pöetzelsberger, E., Bastien, J.-Ch., Brus, R., Benčať, T., Dodan, M., Cvjetkovic, B., Andrašev, V., La-Porta, N., Lavnyy, V., Mandžukovski, D., Petkova, K., Roženbergar, D., Wąsik, R., Mohren, G.M.J., Monteverdi, M.C., Musch, B., Klisz, M., Perić, S., Ljiljana Keça, L., Bartlett, D., Hernea, C. & Pástor M. (2020). Ecology, growth and management of black locust (Robinia pseudoacacia L.), a non-native species integrated into European forests. J. For. Res., 31, 1081–1101. DOI: 10.1007/s11676-020-01116-8.10.1007/s11676-020-01116-8 Search in Google Scholar

Pauková, Ž. (2013). Invasive plant species in the three microregions of Nitra region, south-west Slovakia. Ekológia (Bratislava), 32(2), 262–266. DOI: 10.2478/eko-2013-0022.10.2478/eko-2013-0022 Search in Google Scholar

Paunović, M., Csányi, B., Simonović, P. & Zorić K. (2015). Invasive alien species in the Danube. In I. Liska (Ed.), The Danube River Basin (pp. 389−409). Berlin-Heidelberg: Springer-Verlag. DOI: 10.1007/978-3-662-47739-7.10.1007/978-3-662-47739-7 Search in Google Scholar

Perzanowska, J., Korzeniak, J. & Chmura D. (2019). Alien species as a potential threat for Natura 2000 habitats: a national survey. PeerJ, 7, e8032. DOI: 10.7717/peerj.8032.10.7717/peerj.8032 Search in Google Scholar

QGIS.org. (2015). QGIS Geographic Information System. Open Source Geo-spatial Foundation. https://qgis.org/en/site/. Search in Google Scholar

Regulation (EU) No 1143/2014 of the European Parliament and of the Council of 22 October 2014 on the prevention and management of the introduction and spread of invasive alien species. https://eur-lex.europa.eu/legal-content/sk/TXT/?uri=CELEX:32014R1143. Search in Google Scholar

Rejmánek, M., Richardson, D.M. & Pyšek P. (2013). Plant invasions and invasibility of plant communities. In E. van der Maarel & J. Franklin (Eds.), Vegetation ecology (pp. 387–424). John Wiley and Sons. DOI: 10.1002/9781118452592.ch13.10.1002/9781118452592.ch13 Search in Google Scholar

Richardson, D.M. & Rejmánek M. (2011). Trees and shrubs as invasive alien species – a global review. Divers. Distrib., 17, 788–809. DOI: 10.1111/j.1472-4642.2011.00782.x.10.1111/j.1472-4642.2011.00782.x Search in Google Scholar

Sheldon, A.L. (1969). Equitability indices: Dependence on the species count. Ecology, 50, 466–467. DOI: 10.2307/1933900.10.2307/1933900 Search in Google Scholar

SHMÚ (2019). Water management balance of surface water in 2018 (in Slovak). Bratislava: SHMÚ. http://www.shmu.sk/File/Hydrologia/Vodohospodarskabilancia/VHBkvantitaPV/VHB%202018_skr%C3%A1ten%C3%A1%20verzia.pdf. Search in Google Scholar

Simpson, E.H. (1949). Measurement of diversity. Nature, 163, 688. DOI: 10.1038/163688a0.10.1038/163688a0 Search in Google Scholar

Spellerberg, I.F. (2008). Shannon–Wiener Index. In S.E. Jorgensen & B. Fath (Eds.), Encyclopedia of ecology (pp. 3249−3252). Academic Press. DOI: 10.1016/b978-008045405-4.00132-4.10.1016/B978-008045405-4.00132-4 Search in Google Scholar

StatSoft, Inc. (2004). STATISTICA Cz. verze 7. http://www.StatSoft.Cz. Search in Google Scholar

Špulerová, J., Dobrovodská, M., Šatalová, B. & Kanka R. (2017). Small woodlands and trees in traditional agricultural landscapes of Slovakia. Journal of Landscape Ecology, 10, 63−77. DOI: 10.1515/jlecol-2017-0014.10.1515/jlecol-2017-0014 Search in Google Scholar

Štajerová, K., Šmilauer, P., Brůna, J. & Pyšek P. (2017). Distribution of invasive plants in urban environment is strongly spatially structured. Landsc. Ecol., 32, 681−692. DOI: 10.1007/s10980-016-0480-9.10.1007/s10980-016-0480-9 Search in Google Scholar

Ter Braak, C.J.F. & Šmilauer P. (2018). Canoco reference manual and user’s guide: software for ordination, version 5.10. Ithaca: Microcomputer Power. Search in Google Scholar

Tichý, L. (2002). JUICE, software for vegetation classification. J. Veg. Sci., 13, 451–453. DOI: 10.1111/j.1654-1103.2002.tb02069.x.10.1111/j.1654-1103.2002.tb02069.x Search in Google Scholar

Tichý, L. & Jason H. (2006). JUICE program for management, analysis and classification of ecological data. Program manual, Vegetation Science Group. Brno: Masaryk Univerzity. https://www.sci.muni.cz/botany/juice/JUICEman_all.pdf. Search in Google Scholar

Tomlain, J. (2002). Average annual values of the climate irrigation indicator (in Slovak). In T. Hrnčiarová (Ed.) et al., Atlas krajiny Slovenskej republiky. Bratislava: MŽP SR, Banská Štiavnica: SAŽP, ESPRIT. Search in Google Scholar

Uherčíková, E. (2001). Invasive plant species in floodplain forests on the Danube (in Slovak). Životné Prostredie, 35, 78−82. Search in Google Scholar

Vadas, E. (1914). Die Monographie der Robinie mit besonder Rücksicht auf Ihre forstwirtschafliche Bedeutung. Selmecbánya. Search in Google Scholar

Vannote, R. R., Minshall, G.W., Cummins, K.W., Sedell, J.R. & Cushing C.E. (1980). The river continuum concept. Can. J. Fish. Aquat. Sci., 37, 130−137. DOI: 10.1139/f80-017.10.1139/f80-017 Search in Google Scholar

Vilà, M. & Ibáñez I. (2011). Plant invasions in the landscape. Landsc. Ecol., 26, 461−472. DOI: 10.1007/s10980-011-9585-310.1007/s10980-011-9585-3 Search in Google Scholar

Vítková, M., Müllerová, J., Sádlo, J., Pergl, J. & Pyšek P. (2017). Black locust (Robinia pseudoacacia) beloved and despised: a story of an invasive tree in Central Europe. For. Ecol. Manag., 384, 287–302. DOI: 10.1016/j.foreco.2016.10.057.10.1016/j.foreco.2016.10.057 Search in Google Scholar

Vološčuk, I. (2002). Invasive species of dendroflora in protected areas (in Slovak). Acta Facultatis Ecologiae, 9, 55−60. Search in Google Scholar

Zelený, D. (2012). Notes on the use of average Ellenberg indication values in the analysis of vegetation data (in Czech). Zprávy České Botanické Společnosti, 47, 159–178. Search in Google Scholar

Zelený, D. & Schaffers A. (2012). Too good to be true: pitfalls of using mean Ellenberg indicator values in vegetation analyses. J. Veg. Sci., 23, 419–431. DOI: 10.1111/j.1654-1103.2011.01366.x.10.1111/j.1654-1103.2011.01366.x Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo