1. bookVolume 48 (2021): Issue 2 (July 2021)
Journal Details
License
Format
Journal
eISSN
1338-7014
First Published
16 Apr 2017
Publication timeframe
2 times per year
Languages
English
access type Open Access

Nickel in forests – a short review on its distribution and fluxes

Published Online: 31 Jul 2021
Page range: 205 - 214
Received: 23 Apr 2021
Accepted: 06 Jul 2021
Journal Details
License
Format
Journal
eISSN
1338-7014
First Published
16 Apr 2017
Publication timeframe
2 times per year
Languages
English
Abstract

The distribution and cycling of nickel (Ni) in forests is greatly affected by their proximity to emission sources of the metal. The throughfall deposition is always richer in Ni than the bulk deposition. It can be inferred that some dry deposition enriches the throughfall. In remote forested areas, the hydrological fluxes of Ni do not differ a lot from those in litterfall. In addition, the current year needles in conifers have higher concentrations than the older needles, a sign of absorption and mobility of the metal. In contrast, near an industrial Ni source the older needles accumulate much more of the metal. The Ni content in bark tissue can be used to map the deposition distribution of the metal around an area (rural or urban). The concentrations of Ni in forest soils is also dependent on their distances from the Ni emission sources and the nature of the soil parent material. The Ni concentrations increase with soil depth due to the geogenic origin of the metal. Low pH greatly enhances the mobility of the metal in soils, much more than the leachability of organic matter.

Keywords

Andersen, S., Ødegård, S., Rolf, D., Vogt, R.D., Seip, H.M., 1994. Background levels of heavy metals in Polish forest soils. Ecological Engineering, 3: 245–253. https://doi.org/10.1016/0925-8574(94)90053-110.1016/0925-8574(94)90053-1 Search in Google Scholar

Avila, A., Rodrigo, A., 2004. Trace metal fluxes in bulk deposition, throughfall and stemflow at two evergreen oak stands in NE Spain subject to different exposure to the industrial environment. Atmospheric Environment, 38: 171–180. https://doi.org/10.1016/j.atmosenv.2003.09.06710.1016/j.atmosenv.2003.09.067 Search in Google Scholar

Bacardit, M., Camarero, L., 2009. Fluxes of Al, Fe, Ti, Mn, Pb, Cd, Zn, Ni, Cu, and As in monthly bulk deposition over the Pyrenees (SW Europe): the influence of meteorology on the atmospheric component of trace element cycles and its implications for high mountain lakes. Journal of Geophysical Research, 114: G00D02.10.1029/2008JG000732 Search in Google Scholar

Bergkvist, B., 1987. Leaching of metals from forest soils as influenced by tree species and management. Forest Ecology and Management, 22: 29–56. https://doi.org/10.1016/0378-1127(87)90094-610.1016/0378-1127(87)90094-6 Search in Google Scholar

Βergkvist, B., Folkeson, L., Berggren, D., 1989. Fluxes of Cu, Zn, Pb, Cd, Cr, and Ni in temperate forest ecosystems. Water, Air, and Soil Pollution, 47: 217–286. https://doi.org/10.1007/BF0027932810.1007/BF00279328 Search in Google Scholar

Blaser, P., Zimmermann, S., Luster, J., Shotyk, W., 2000. Critical examination of trace element enrichments and depletions in soils: As, Cr, Cu, Ni, Pb and Zn in Swiss forest soils. The Science of the Total Environment, 249: 257–280. https://doi.org/10.1016/S0048-9697(99)00522-710.1016/S0048-9697(99)00522-7 Search in Google Scholar

Brown, P.H., Welch, R.M., Cary, E.E., 1987. Nickel: a micronutrient essential for higher plants. Plant Physiology, 85:801–803. https://doi.org/10.1104/pp.85.3.80110.1104/pp.85.3.801 Search in Google Scholar

Brumelis, G., Lapin, L., Nikodemus O., Tabors, G., 2002. Use of the O horizon of forest soils in monitoring metal deposition in Latvia. Water, Air, and Soil Pollution, 135: 291–309. https://doi.org/10.1023/A:101471411105010.1023/A:1014714111050 Search in Google Scholar

Çakır, M., Akburak, S., 2017. Litterfall and nutrients return to soil in pure and mixed stands of oak and beech. Journal of the Faculty of Forestry Istanbul University, 67: 185–200. Search in Google Scholar

Chrzan, A., Formicki, G., Marko-Worłowska, M., 2013. Heavy metals concentration in forest soils. Fresenius Environmental Bulletin, 22: 1993–1996. Search in Google Scholar

Dalton, D.A., Evans, H.J., Hanus, F.J., 1985. Stimulation by nickel of soil microbial urease activity and urease and hydrogenase activities in soybeans grown in a low-nickel soil. Plant and Soil, 88: 245–258.10.1007/BF02182451 Search in Google Scholar

De Nicola F., Maisto, G., Alfani, A., 2003. Assessment of nutritional status and trace element contamination of holm oak woodlands through analyses of leaves and surrounding soils. The Science of the Total Environment, 311: 191–203. https://doi.org/10.1016/S0048-9697(03)00132-310.1016/S0048-9697(03)00132-3 Search in Google Scholar

Derome, G., Nieminen, T., 1998. Metal and macronutrient fluxes in heavy-metal polluted Scots pine ecosystems in SW Finland. Environmental Pollution, 1989: 219–228. https://doi.org/10.1016/S0269-7491(98)00118-310.1016/S0269-7491(98)00118-3 Search in Google Scholar

Dixon, E., Gazzola C., Blakely, R.I., Zerner B., 1975. Jack-Bean urease (E.C.3.5. 1.5.3.). A metalloenzyme. A simple biological role for nickel. Journal of American Chemical Society, 97: 4131–4133.10.1021/ja00847a045 Search in Google Scholar

Gandois, L., Tipping, E., Dumat, C., Probst, A., 2010a. Canopy influence on trace metal atmospheric inputs on forest ecosystems: speciation in throughfall. Atmospheric Environment, 44: 824–833. https://doi.org/10.1016/j.atmosenv.2009.11.02810.1016/j.atmosenv.2009.11.028 Search in Google Scholar

Gandois L., Nicolas, M., Van der Heijden, G., Probst, A., 2010b. The importance of biomass net uptake for a trace metal budget in a forest stand in north-eastern France. The Science of the Total Environment, 408: 5870–5877.10.1016/j.scitotenv.2010.07.061 Search in Google Scholar

Gandois, L., Probst, A., 2012. Localisation and mobility of trace metals in silver fir needles. Chemosphere, 87: 204–210.10.1016/j.chemosphere.2011.12.020 Search in Google Scholar

Hagemeyer, J., Schfifer, H., Breckle, S.W., 1994. Seasonal variations of nickel concentrations in annual xylem rings of beech trees (Fagus sylvatica L.). The Science of the Total Environment, 145: 111–118. https://doi.org/10.1016/0048-9697(94)90301-810.1016/0048-9697(94)90301-8 Search in Google Scholar

Hassan, M.U., Chattha, M.U., Khan, I., Chattha, M.B., Aamer, M., Nawaz, M., Ali, A., Khan, M.A.U., Khan, T.A., 2019. Nickel toxicity in plants: reasons, toxic effects, tolerance mechanisms, and remediation possibilities—a review. Environmental Science and Pollution Research, 26: 12673–12688. https://doi.org/10.1007/s11356-019-04892-x10.1007/s11356-019-04892-x Search in Google Scholar

Hernandez, L., Probst, A., Probst, J.L., Ulrich, E., 2003. Heavy metal distribution in some French forest soils: evidence for atmospheric contamination. The Science of the Total Environment, 312: 195–219. https://doi.org/10.1016/S0048-9697(03)00223-710.1016/S0048-9697(03)00223-7 Search in Google Scholar

Huang, J.H., Lgen, G., Matzner, E., 2011. Fluxes and budgets of Cd, Zn, Cu, Cr and Ni in a remote forested catchment in Germany. Biogeochemistry, 103: 59–70. https://doi.org/10.1007/s10533-010-9447-010.1007/s10533-010-9447-0 Search in Google Scholar

Jeffries, D.S., Snyder, W.R., 1981. Atmospheric deposition of heavy metals in central Ontario. Water, Air, and Soil Pollution, 15: 127–152. https://doi.org/10.1007/BF0016124810.1007/BF00161248 Search in Google Scholar

Kozlov, M.V., Haukioja, E., Bakhtiarov, A.V., Stroganov, D.N., Zimina, S.N., 2000. Root versus canopy up-take of heavy metals by birch in an industrially polluted area: contrasting behaviour of nickel and copper. Environmental Pollution, 107: 413–420. https://doi.org/10.1016/S0269-7491(99)00159-110.1016/S0269-7491(99)00159-1 Search in Google Scholar

Mankovska, B., 1998. The chemical composition of spruce and beech foliage as environmental indicator in Slovakia. Chemosphere, 36: 949–953. https://doi.org/10.1016/S0045-6535(97)10153-910.1016/S0045-6535(97)10153-9 Search in Google Scholar

Mauseth, J.D., 1998. Botany. An introduction to plant biology. Sudbury, Massachusetts: Jones and Bartlett Publishers. 794 p. Search in Google Scholar

McGee, C.J., Fernandez, I.J., Norton, S.A., Stubbs, C.S., 2007. Cd, Ni, Pb, and Zn concentrations in forest vegetation and soils in Maine. Water, Air, and Soil Pollution, 180: 141–153. https://doi.org/10.1007/s11270-006-9257-010.1007/s11270-006-9257-0 Search in Google Scholar

Michopoulos, P., Bourletsikas, A., Kaoukis, K., Daskalakou, E., Karetsos, G., Kostakis, M., Thomaidis, N.S., Pasias, I.N., Kaberi, H., Iliakis, S., 2018. The distribution and variability of heavy metals in a mountainous fir forest ecosystem in two hydrological years. Global NEST Journal, 20: 188-197.10.30955/gnj.002506 Search in Google Scholar

Morrison, I.K., Hogan, G.D., 1986. Trace element distribution within the tree phytomass and forest floor of a tolerant hardwood stand, Algoma, Ontario. Water, Air, and Soil Pollution, 31 493-500. https://doi.org/10.1007/BF0063086710.1007/BF00630867 Search in Google Scholar

Muezzinoglu, A., Cizmecioglu, S.C., 2006. Deposition of heavy metals in a Mediterranean climate area. Atmospheric Research, 81: 1–16. https://doi.org/10.1016/j.atmosres.2005.10.00410.1016/j.atmosres.2005.10.004 Search in Google Scholar

Mutsch, F., 1996. The use of heavy metals detected in the soil as air-pollution indicators on a stemming slope of the Achenkirch Area. Phyton, 36: 145–154. Search in Google Scholar

Nieminen, T.M., Derome, J., Saarsalmi, A., 2004. The applicability of needle chemistry for diagnosing heavy metal toxicity to trees. Water, Air, and Soil Pollution, 157: 269–279. https://doi.org/10.1023/B:WATE.0000038902.10041.6910.1023/B:WATE.0000038902.10041.69 Search in Google Scholar

Nieminen, T.M., Ukonmaanaho, L., Rausch, N., Shotyk, W., 2007. Biogeochemistry of nickel and its release into the environment. Metal Ions in Life Sciences, 2: 1–30. https://doi.org/10.1002/9780470028131.ch110.1002/9780470028131.ch1 Search in Google Scholar

Nikonov, V., Goryainova, V., Lukina, N., 2001. Ni and Cu migration and accumulation in forest ecosystems Kola Peninsula. Chemosphere, 42: 93–100. https://doi.org/10.1016/S0045-6535(00)00104-110.1016/S0045-6535(00)00104-1 Search in Google Scholar

Nkongolo, K.K., Vaillancourt A., Dobrzeniecka, S., Mehes, M., Beckett, P., 2008. Metal content in soil and black spruce (Picea mariana) trees in the Sudbury legion (Ontario, Canada): low concentration of arsenic, cadmium, and nickel detected near smelter sources. Bulletin of Environmental Contamination and Toxicology, 80: 107–111. https://doi.org/10.1007/s00128-007-9325-110.1007/s00128-007-9325-1 Search in Google Scholar

Nygård, T., Steinnes, E., Royse, O., 2012. Distribution of 32 elements in organic surface soils: contribution from atmospheric transport of pollutants and natural sources. Water, Air, and Soil Pollution, 223: 699–713. https://doi.org/10.1007/s11270-011-0895-510.1007/s11270-011-0895-5 Search in Google Scholar

Offenthaler, I., Dirnböck, T., Grabner, M.T., Kobler, J., Mirtl, M., Riemer, S., 2009. Long-term deposition of trace metals at the integrated monitoring site Zöbelboden. Report, Umweltbundesamt, N.F. 246. Vienna: Umweltbundesamt. 77 p. Search in Google Scholar

Pacès, T., 1998. Critical loads of trace metals in soils: a method of calculation. Water, Air and Soil Pollution, 105: 451–458. https://doi.org/10.1023/A:100501650095610.1023/A:1005016500956 Search in Google Scholar

Parzych, A., Mochnacký, S., Sobisz, Z., Kurhaluk, N., Polláková, N., 2017. Accumulation of heavy metals in needles and bark of Pinus species. Folia Forestalia Polonica, series A – Forestry, 59: 34–44.10.1515/ffp-2017-0004 Search in Google Scholar

Rautio, P., Huttunen, S., 2003. Total vs. internal element concentrations in Scots pine needles along a sulphur and metal pollution gradient. Environmental Pollution, 122: 273–289.10.1016/S0269-7491(02)00289-0 Search in Google Scholar

Reimann, C., Kashulina, G., Caritat, P., Niskavaara, H., 2001. Multi-element multi-medium regional geochemistry in the European Arctic: element concentration, variation and correlation. Applied Geochemistry, 16: 759–780. https://doi.org/10.1016/S0883-2927(00)00070-610.1016/S0883-2927(00)00070-6 Search in Google Scholar

Rosssini Oliva, S., Mingorance, M.D., 2006. Assessment of airborne heavy metal pollution by aboveground pant parts. Chemosphere, 65: 177–182. https://doi.org/10.1016/j.chemosphere.2006.03.00310.1016/j.chemosphere.2006.03.003 Search in Google Scholar

Ruter, J. M., 2005. Effect of nickel applications for the control of mouse ear disorder on river birch. Journal of Environmental Horticulture, 23: 17–20.10.24266/0738-2898-23.1.17 Search in Google Scholar

Sardans, J., Peñuelas, J., 2007. Drought changes the dynamics of trace element accumulation in a Mediterranean Quercus ilex forest. Environmental Pollution, 147: 567–583. https://doi.org/10.1016/j.envpol.2006.10.00810.1016/j.envpol.2006.10.008 Search in Google Scholar

Sawidis, T., Krystallidis, P., Veros, D., Chettri, M., 2012. A study of air pollution with heavy metals in Athens City and Attica Basin using evergreen trees as biological indicators. Biological Trace Element Research, 148:396–408. https://doi.org/10.1007/s12011-012-9378-910.1007/s12011-012-9378-9 Search in Google Scholar

Schelle, E., Rawlins, B.G., Lark, R.M., Webster, R., Staton, I., McLeod, C.W., 2008. Mapping aerial metal deposition in metropolitan areas from tree bark: a case study in Sheffield, England. Environmental Pollution, 155: 164–173. https://doi.org/10.1016/j.envpol.2007.10.03610.1016/j.envpol.2007.10.036 Search in Google Scholar

Steiness, E., Friedland, A.J., 2005. Metal contamination of natural surface soils from long- range atmospheric transport: existing and missing knowledge. Environmental Reviews, 14: 169–186.10.1139/a06-002 Search in Google Scholar

Shparyk, Y.S., Parpan, V.I., 2004. Heavy metal pollution and forest health in the Ukrainian Carpathians. Environmental Pollution, 130: 55–63. https://doi.org/10.1016/j.envpol.2003.10.03010.1016/j.envpol.2003.10.030 Search in Google Scholar

Starr, M., Lindroos, A.J., Ukonmaanaho, L., Tarvainen, T., Tanskanen, H., 2003. Weathering release of heavy metals from soil in comparison to deposition, litterfall and leaching fluxes in a remote, boreal coniferous forest. Applied Geochemistry, 18: 607–613. https://doi.org/10.1016/S0883-2927(02)00157-910.1016/S0883-2927(02)00157-9 Search in Google Scholar

Sverdrup, H., Warfinge, P., 1993. Calculating field weathering rates using a mechanistic geochemical model PROFILE. Applied Geochemistry, 8: 273–283. https://doi.org/10.1016/0883-2927(93)90042-F10.1016/0883-2927(93)90042-F Search in Google Scholar

Suchara, I., Sucharová, J., 2002. Distribution of sulphur and heavy metals in forest floor humus of the Czech Republic. Water, Air and Soil Pollution, 136: 289–316.10.1023/A:1015235924991 Search in Google Scholar

Tole, M.P., 1985. The kinetics of dissolution of zircon (Zr-SiO4). Geochimica et Cosmochimica Acta, 48: 453–458. https://doi.org/10.1016/0016-7037(85)90036-510.1016/0016-7037(85)90036-5 Search in Google Scholar

Ukonmaanaho, L., Starr, M., Hirvi, J.-P., Kokko, A., Lahermo, P., Mannio, J., Paukola, T., Ruoho-Airola, T., Tanskanen, H., 1998. Heavy metal concentrations in various aqueous and biotic media in Finnish Integrated Monitoring catchments. Boreal Environment Research, 3: 235–249. Search in Google Scholar

Ukonmaanaho, L., Starr, M., Mannio J., Ruoho-Airola, T., 2001. Heavy metal budget for two headwater forested catchments in background areas of Finland. Environmental Pollution, 114: 63–75. https://doi.org/10.1016/S0269-7491(00)00207-410.1016/S0269-7491(00)00207-4 Search in Google Scholar

Uren, N.C., 1992. Forms, reactions, and availability of nickel in soil. Advances in Agronomy, 48: 141–203. https://doi.org/10.1016/S0065-2113(08)60937-210.1016/S0065-2113(08)60937-2 Search in Google Scholar

Utermann, J., Aydin, C.T., Bischoff, N., Böttcher, J., Eickenscheidt, N., Gehrmann, J., König, N., Scheler, B., Stange, F., Wellbrock, N., 2019. Heavy metal stocks and concentrations in forest soils. In Wellbrock, N., Bolte, A. (eds). Status and dynamics of forests in Germany. Ecological Studies 237. Springer International Publishing, p. 199–229.10.1007/978-3-030-15734-0_7 Search in Google Scholar

Watmough, S.A., Dickinson, N.M., 1995. Dispersal and mobility of heavy metals in relation to tree survival in an aerially contaminated woodland soil. Environmental Pollution, 90: 135–142.10.1016/0269-7491(94)00104-L Search in Google Scholar

Wood, B.W., Reilly, C.C., Nyczepir, A.P., 2006. Field deficiency of nickel in trees: symptoms and causes. Acta Horticulturae, 721: 83–98.10.17660/ActaHortic.2006.721.10 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo