1. bookVolume 64 (2018): Issue 4 (December 2018)
Journal Details
License
Format
Journal
eISSN
2449-8343
First Published
04 Apr 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

Antioxidant potential of Hippophae rhamnoides L. extracts obtained with green extraction technique

Published Online: 04 Mar 2019
Volume & Issue: Volume 64 (2018) - Issue 4 (December 2018)
Page range: 14 - 22
Received: 15 May 2018
Accepted: 05 Oct 2018
Journal Details
License
Format
Journal
eISSN
2449-8343
First Published
04 Apr 2014
Publication timeframe
4 times per year
Languages
English
Summary

Introduction: Antioxidants, isolated from different plant parts, are widely used due to their ability to prevent the development of so-called oxidative stress. Sea buckthorn (Hippophae rhamnoides L.) is one of the plants with expected antioxidant properties.

Objective: The aim of the study was to evaluate the antioxidant activity of ethanolic, methanolic and acetonic extracts of H. rhamnoides leaves, ripe and unripe fruits obtained by ultrasound-assisted extraction.

Methods: To estimate the antioxidant potential of the extracts the DPPH, FRAP, ABTS and Folin-Ciocalteu methods were applied. Moreover, the influence of the extrahent, as well as extraction time, on this activity was evaluated.

Results: Sea buckthorn leaf extracts showed higher activity, contrary to the fruit extracts. Moreover, higher activity of ripe fruit extracts compared to unripe material extracts was found. To obtain the highest content of antioxidants in the extracts, ultrasound-assisted extraction for 60 min with methanol should be applied.

Conclusions: The presented in vitro results could lead to the conclusion that H. rhamnoides seems to be a valuable source of antioxidants to be applied in various branches of industry.

Keywords

1. Niesteruk A, Lewandowska H, Golub Ż, Wisłocka R, Lewandowski W. Zainteresujmy się rokitnikiem. Preparaty z rokitnika zwyczajnego (Hippophae rhamnoides L.) jako dodatki do żywności oraz ocena ich rynku w Polsce. Kosmos 2013; 62(4):571-81.Search in Google Scholar

2. Malinowska P, Olas B. Rokitnik – roślina wartościowa dla zdrowia. Kosmos 2016; 65(2):285-92.Search in Google Scholar

3. Michalak M, Podsędek A, Glinka R. Potencjał przeciwutleniający oraz związki polifenolowe glikolowych ekstraktów z Hippophae rhamnoides L. i Vaccinium oxycoccos L. Post Fitoter 2016; 17(1):33-8.Search in Google Scholar

4. Olas B. Sea buckthorn as a source of important bioactive compounds in cardiovascular diseases. Food Chem Toxicol 2016; 97:199-204. doi: http://dx.doi.org/10.1016/j.fct.2016.09.00810.1016/j.fct.2016.09.00827616182Open DOISearch in Google Scholar

5. Poprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ, Valko M. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol Sci 2017; 38(7):592-607. doi: http://dx.doi.org/10.1016/j.tips.2017.04.00510.1016/j.tips.2017.04.00528551354Open DOISearch in Google Scholar

6. Andrisic L, Dudzik D, Barbas C, Milkovic L, Grune T, Zarkovic N. Short overview on metabolomics approach to study pathophysiology of oxidative stress in cancer. Redox Biol 2018; 14:47-58. doi: http://dx.doi.org/10.1016/j.redox.2017.08.00910.1016/j.redox.2017.08.009558339428866248Open DOISearch in Google Scholar

7. Van Raamsdonk JM, Vega IE, Brundin P. Oxidative stress in neurodegenerative disease: causation or association? Oncotarget 2017; 8(7):10777-10778. doi: http://dx.doi.org/10.18632/oncotarget.1465010.18632/oncotarget.14650535522028099897Open DOISearch in Google Scholar

8. Steullet P, Cabungcal JH, Coyle J, Didriksen M, Gill K, Grace AA et al. Oxidative stress – driven parvalbumin interneuron impairment as a common mechanism in models of schizophrenia. Mol Psychiatry 2017; 22(7):936-943. doi: http://dx.doi.org/10.1038/mp.2017.4710.1038/mp.2017.47549169028322275Search in Google Scholar

9. Steenkamp LR, Hough CM, Reus VI, Jain FA, Epel ES, James SJ et al. Severity of anxiety – but not depression – is associated with oxidative stress in Major Depressive Disorder. J Affect Disord 2017; 219:193-200. doi: http://dx.doi.org/10.1016/j.jad.2017.04.04210.1016/j.jad.2017.04.042555032028564628Open DOISearch in Google Scholar

10. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 2004; 114(12):1752-1761. doi: http://dx.doi.org/10.1172/JCI2162510.1172/JCI2162553506515599400Search in Google Scholar

11. Sieniawska E. Losy roślinnych antyoksydantów w organizmie ludzkim. Post Fitoter 2012; 13(1):55-58.Search in Google Scholar

12. Muzykiewicz A, Zielonka-Brzezicka J, Klimowicz A, Florkowska K. Jarząb pospolity (Sorbus aucuparia L.) jako źródło składników o potencjalnym działaniu antyoksydacyjnym – porównanie właściwości przeciwutleniających ekstraktów z liści, kwiatów i owoców. Probl Hig Epidemiol 2017; 98(2):125-132.Search in Google Scholar

13. Zielonka-Brzezicka J, Nowak A, Zielińska M, Klimowicz A. Porównanie właściwości przeciwutleniających wybranych części maliny właściwej (Rubus idaeus) i jeżyny europejskiej (Rubus fruticosus). Pomeranian J Life Sci 2017; 62(4):52-59.10.21164/pomjlifesci.269Search in Google Scholar

14. Nowak A., Zielonka-Brzezicka J., Pechaiko D., Tkacz M., Klimowicz A. Ocena właściwości antyoksydacyjnych liści Ginkgo biloba L. po zakończeniu wegetacji. Pomeranian J Life Sci 2017; 63(1):24-30.Search in Google Scholar

15. Xu DP, Zheng J, Zhou Y, Li Y, Li S, Li HB. Ultra-sound-assisted extraction of natural antioxidants from the flower of Limonium sinuatum: optimization and comparison with conventional methods. Food Chem 2017; 217:552-559. doi: http://dx.doi.org/10.1016/j.foodchem.2016.09.01310.1016/j.foodchem.2016.09.01327664671Open DOISearch in Google Scholar

16. Namngam C, Pinsirodom P. Antioxidant properties, selected enzyme inhibition capacities, and a cosmetic cream formulation of Thai mango seed kernel extracts. Trop J Pharm Res 2017; 16(1):9-16. doi: http://dx.doi.org/10.4314/tjpr.v16i1.310.4314/tjpr.v16i1.3Open DOISearch in Google Scholar

17. Tian Y, Liimatainen J, Alanne AL, Lindstedt A, Liu P, Sinkkonen J et al. Phenolic compounds extracted by acidic aqueous ethanol from berries and leaves of different berry plants. Food Chem 2017; 220:266-281. doi: http://dx.doi.org/10.1016/j.foodchem.2016.09.14510.1016/j.foodchem.2016.09.14527855899Open DOISearch in Google Scholar

18. Górnaś P, Šnē E, Siger A, Segliņa D. Sea buck-thorn (Hippophae rhamnoides L.) vegetative parts as an unconventional source of lipophilic antioxidants. Saudi J Biol Sci 2016; 23(4):512-516. doi: http://dx.doi.org/10.1016/j.sjbs.2015.05.01510.1016/j.sjbs.2015.05.015489019927298585Open DOISearch in Google Scholar

19. Fatima T, Kesari V, Watt I, Wishart D, Todd JF, Schroeder WR et al. Metabolite profiling and expression analysis of flavonoid, vitamin C and tocopherol biosynthesis genes in the antioxidant-rich sea buckthorn (Hippophae rhamnoides L.). Phytochemistry 2015; 118:181-191. doi: http://dx.doi.org/10.1016/j.phytochem.2015.08.00810.1016/j.phytochem.2015.08.00826318327Open DOISearch in Google Scholar

20. Kumar MY, Tirpude RJ, Maheshwari DT, Bansal A, Misra K. Antioxidant and antimicrobial properties of phenolic rich fraction of Seabuck-thorn (Hippophae rhamnoides L.) leaves in vitro. Food Chem 2013; 141(4):3443-3450. doi: http://dx.doi.org/10.1016/j.foodchem.2013.06.05710.1016/j.foodchem.2013.06.05723993505Open DOISearch in Google Scholar

21. Kiewlicz J, Malinowska P, Szymusiak H. Aktywność przeciwrodnikowa wybranych wyciągów ziołowych. Probl Hig Epidemiol 2013; 94(2):317-320.Search in Google Scholar

22. Guo R, Guo X, Li T, Fu X, Liu RH. Comparative assessment of phytochemical profiles, antioxidant and antiproliferative activities of sea buck-thorn (Hippophae rhamnoides L.) berries. Food Chem 2017; 221:997-1003. doi: http://dx.doi.org/10.1016/j.foodchem.2016.11.06310.1016/j.foodchem.2016.11.06327979305Open DOISearch in Google Scholar

23. Malinowska P. Effect of flavonoids content on antioxidant activity of commercial cosmetic plant extracts. Herba Pol 2013; 59(3):63-75. doi: http://dx.doi.org/10.2478/hepo-2013-001710.2478/hepo-2013-0017Open DOISearch in Google Scholar

24. Ghitescu RE, Volf I, Carausu C, Bühlmann AM, Gilca IA, Popa VI. Optimization of ultra-sound-assisted extraction of polyphenols from spruce wood bark. Ultrason Sonochem 2015; 22:535-541. doi: http://dx.doi.org/10.1016/j.ultsonch.2014.07.01310.1016/j.ultsonch.2014.07.01325132494Open DOISearch in Google Scholar

25. Bimakr M, Rahman RA., Taip FS, Adzahan NM, Sarker MZI, Ganjloo A. Optimization of ultrasound-assisted extraction of crude oil from winter melon (Benincasa hispida) seed using response surface methodology and evaluation of its antioxidant activity, total phenolic content and fatty acid composition. Molecules 2012; 17(10):11748-11762. doi: http://dx.doi.org/10.3390/molecules17101174810.3390/molecules171011748626873323044712Search in Google Scholar

26. Chemat F, Rombaut N, Sicaire AG, Meullemiestre A, Fabiano-Tixier AS, Abert-Vian M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason Sonochem 2017; 34:540-560. doi: http://dx.doi.org/10.1016/j.ultsonch.2016.06.03510.1016/j.ultsonch.2016.06.03527773280Open DOISearch in Google Scholar

27. Tiwari BK. Ultrasound: A clean, green extraction technology. Trends Anal Chem 2015; 71:100-109. doi: http://dx.doi.org/10.1016/j.trac.2015.04.01310.1016/j.trac.2015.04.013Open DOISearch in Google Scholar

28. Roby MHH., Sarhan MA, Selim KAH, Khalel KI. Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Ind Crop Prod 2013; 43:827-831. doi: http://dx.doi.org/10.1016/j.indcrop.2012.08.02910.1016/j.indcrop.2012.08.029Open DOISearch in Google Scholar

29. Hossain MA, Shah MD. A study on the total phenols content and antioxidant activity of essential oil and different solvent extracts of endemic plant Merremia borneensis. Arab J Chem 2015; 8(1):66-71. doi: http://dx.doi.org/10.1016/j.arabjc.2011.01.00710.1016/j.arabjc.2011.01.007Open DOISearch in Google Scholar

30. Jeszka-Skowron M, Flaczyk E, Kobus-Cisowska J, Kośmider A, Górecka D. Optymalizacja procesu ekstrakcji związków fenolowych o aktywności przeciwrodnikowej z liści morwy białej za pomocą metody płaszczyzny odpowiedzi (RSM). Żywn Nauka Technol Jakość 2014; 21(1):148-159. doi: http://dx.doi.org/10.15193/zntj/2014/92/148-15910.15193/zntj/2014/92/148-159Open DOISearch in Google Scholar

31. Alam MN, Bristi NJ, Rafiquzzaman M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm J 2013; 21(2):143-52. doi: http://dx.doi.org/10.1016/j.jsps.2012.05.00210.1016/j.jsps.2012.05.002405253824936134Open DOISearch in Google Scholar

32. Matysiak M, Gaweł-Bęben K, Rybczyńska K, Gmiński J, Surma S. Porównanie wybranych właściwości biologicznych czosnku (Allium sativum L.) pochodzącego z Polski i Chin. Żywn Nauka Technol Jakość 2015; 2(99):160-9. doi: http://dx.doi.org/10.15193/zntj/2015/99/03010.15193/zntj/2015/99/030Open DOISearch in Google Scholar

33. Apak R, Özyürek M, Güçlü K, Çapanoğlu E. Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. J Agric Food Chem 2016; 64(5):997-1027. doi: http://dx.doi.org/10.1021/acs.jafc.5b0473910.1021/acs.jafc.5b0473926728425Open DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo