1. bookVolume 72 (2021): Issue 2 (December 2021)
    NLP, Corpus Linguistics and Interdisciplinarity
Journal Details
License
Format
Journal
eISSN
1338-4287
First Published
05 Mar 2010
Publication timeframe
2 times per year
Languages
English
access type Open Access

The Menzerath-Altmann law as the relation between lengths of words and morphemes in Czech

Published Online: 30 Dec 2021
Page range: 405 - 414
Journal Details
License
Format
Journal
eISSN
1338-4287
First Published
05 Mar 2010
Publication timeframe
2 times per year
Languages
English
Abstract

It is shown that the mean morpheme length (measured in phonemes) decreases with the increasing length of word types (in morphemes) in Czech texts, i.e., these language units behave according to the Menzerath-Altmann law. The law is not valid in general for word tokens. Some hints towards an interpretation of parameters are presented.

Keywords

[1] Cramer, I. M. (2005). Das Menzerathsche Gesetz. In R. Köhler, G. Altmann and R. G. Piotrowski (eds.), Quantitative Linguistics. An International Handbook. Berlin/New York: de Gruyter, pages 659–688. Search in Google Scholar

[2] Popescu, I.-I., Altmann, G., Grzybek, P., Jayaram, B. D., Köhler, R., Krupa, V., Mačutek, J., Pustet, R., Uhlířová, L., and Vidya, M. N. (2009). Word Frequency Studies. Berlin/New York: de Gruyter. Search in Google Scholar

[3] Bentz, C., and Ferrer-i-Cancho, R. (2016). Zipf’s law of abbreviation as a language universal. In C. Bentz, G. Jäger and I. Yanovich (eds.), Proceedings of the Leiden Workshop on Capturing Phylogenetic Algorithms for Linguistics. University of Tübingen, online publication system. Available at: https://publikationen.uni-tuebingen.de/xmlui/handle/10900/68558. Search in Google Scholar

[4] Menzerath, P. (1954). Die Architektonik des deutschen Wortschatzes. Bonn: Dümmler. Search in Google Scholar

[5] Altmann, G. (1980). Prolegomena to Menzerath’s law. In R. Grothjahn (ed.), Glottometrika 2. Bochum: Brockmeyer, pages 1–10. Search in Google Scholar

[6] Altmann, G., and Schwibbe, M. H. (1989). Das Menzerathsche Gesetz in informationsverarbeitenden Systemen. Hildesheim: Georg Olms Verlag. Search in Google Scholar

[7] Kelih, E. (2010). Parameter interpretation of Menzerath law: Evidence from Serbian. In P. Grzybek, E. Kelih and J. Mačutek (eds.), Text and Language. Structures, Functions, Interrelations, Quantitative Perspectives. Wien: Praesens, pages 71–79. Search in Google Scholar

[8] Mačutek, J., and Rovenchak, A. (2011). Canonical word forms: Menzerath-Altmann law, phonemic length and syllabic length. In E. Kelih, V. Levickij and V. Matskulyak (eds.), Issues in Quantitative Linguistics 2. Lüdenscheid: RAM-Verlag, pages 136–147. Search in Google Scholar

[9] Mačutek, J., and Mikros, G. K. (2015). Menzerath-Altmann law for word length motifs. In G. K. Mikros and J. Mačutek (eds.), Sequences in Language and Text. Berlin/Boston: de Gruyter, pages 125–131. Search in Google Scholar

[10] Teupenhayn, R., and Altmann, G. (1984). Clause length and Menzerath’s law. In J. Boy and R. Köhler (eds.), Glottometrika 6. Bochum, Brockmeyer, pages 127–138. Search in Google Scholar

[11] Mačutek, J., Čech, R., and Milička, J. (2017). Menzerath-Altmann law in syntactic dependency structure. In S. Montemagni and J. Nivre (eds.), Proceedings of the Fourth International Conference on Dependency Linguistics (Depling 2017). Linköping: Linköping University Press, pages 100–107. Search in Google Scholar

[12] Köhler, R. (2015). Linguistic motifs. In G. K. Mikros and J. Mačutek (eds.), Sequences in Language and Text. Berlin/Boston: de Gruyter, pages 89–108. Search in Google Scholar

[13] Gerlach, R. (1982). Zur Überprüfung des Menzerath’schen Gesetzes im Bereich der Morphologie. In W. Lehfeldt and U. Strauss (eds.), Glottometrika 4. Bochum: Brockmeyer, pages 95–102. Search in Google Scholar

[14] Krott, A. (1996). Some remarks on the relation between word length and morpheme length. Journal of Quantitative Linguistics, 3(1), pages 29–37.10.1080/09296179608590061 Search in Google Scholar

[15] Hřebíček, L. (1995). Text Levels. Constructs, Constituents and the Menzerath-Altmann Law. Trier: WVT. Search in Google Scholar

[16] Altmann, G., Erat, E., and Hřebíček, L. (1996). Word length distribution in Turkish texts. In P. Schmidt (ed.), Glottometrika 15. Trier: WVT, pages 195–204. Search in Google Scholar

[17] Milička, J. (2014). Menzerath’s law: The whole is greater than the sum of its parts. Journal of Quantitative Linguistics, 21(2), pages 85–99.10.1080/09296174.2014.882187 Search in Google Scholar

[18] Slavíčková, E. (1975). Retrográdní morfematický slovník češtiny s připojenými inventárními slovníky českých morfémů kořenových, prefixálních a sufixálních. Praha: Academia. Search in Google Scholar

[19] Komárek, M., Kořenský, J., Petr, J., and Veselková, J. (1986). Mluvnice češtiny. Svazek 2. Tvarosloví. Praha: Academia. Search in Google Scholar

[20] Komárek, M. (2016). Příspěvky k české morfologii. 2nd ed. Olomouc: Periplum. Search in Google Scholar

[21] Altmann, G. (1992). Das Problem der Datenhomogenität. In B. Rieger (ed.), Glottometrika 13. Bochum: Brockmeyer, pages 287–298. Search in Google Scholar

[22] Grzybek, P. (2013). Homogeneity and heterogeneity within language(s) and text(s): Theory and practice of word length modeling. In R. Köhler and G. Altmann (eds.), Issues in Quantitative Linguistics 3. Lüdenscheid: RAM-Verlag, pages 66–99. Search in Google Scholar

[23] Williams, J. R., Bagrow, J. P., Danforth, C. M., and Dodds, P. S. (2015). Text mixing shapes the anatomy of rank-frequency distributions. Physical Review E, 91, 052811.10.1103/PhysRevE.91.052811 Search in Google Scholar

[24] Čech, R., Kosek, P., Mačutek, J., and Navrátilová, O. (2020). Proč (někdy) nemíchat texty aneb Text jako možná výchozí jednotka lingvistické analýzy. Naše řeč, 103(1–2), pages 24–36. Search in Google Scholar

[25] Kubát, M. (2016). Kvantitativní analýza žánrů. Ostrava: Ostravská univerzita. Search in Google Scholar

[26] Mačutek, J., Chromý, J., and Koščová, M. (2019). A data-based classification of Slavic languages: Indices of qualitative variation applied to grapheme frequencies. Journal of Quantitative Linguistics, 26(1), pages 66–80. Search in Google Scholar

[27] Mačutek, J., and Wimmer, G. (2013). Evaluating goodness-of-fit of discrete distribution models in quantitative linguistics. Journal of Quantitative Linguistics, 20(3), pages 227–240.10.1080/09296174.2013.799912 Search in Google Scholar

[28] Kelih, E. (2012). On the dependency of word length on text length. Empirical results form Russian and Bulgarian parallel texts. In S. Naumann, P. Grzybek, R. Vulanović and G. Altmann (eds.), Synergetic Linguistics. Text and Language as Dynamic Systems. Wien: Praesens, pages 67–80. Search in Google Scholar

[29] Čech, R., and Mačutek, J. (2021). The Menzerath-Altmann law in Czech poems by K. J. Erben. Proceedings of the Conference Plotting Poetry 4 (in print). Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo