1. bookVolume 14 (2021): Issue 1 (May 2021)
Journal Details
License
Format
Journal
First Published
20 Jun 2008
Publication timeframe
3 times per year
Languages
English
access type Open Access

State of the Landscape and Dynamics of Loss and Fragmentation of Forest Critically Endangered in the Tropical Andes Hotspot: Implications for Conservation Planning

Published Online: 26 May 2021
Page range: 73 - 91
Received: 12 Feb 2021
Accepted: 07 Apr 2021
Journal Details
License
Format
Journal
First Published
20 Jun 2008
Publication timeframe
3 times per year
Languages
English
Abstract

Currently, there is no precise information on the degree of transformation of Tropical Andes hotspot landscape and native ecosystems due to the intensification of agricultural and urban land-use. Proper knowledge of these changes would provide crucial information for planning conservation strategies. We evaluated the impact of the intensification of agricultural and urban land-use on the Inter-Andean Dry Forest and Tropical Montane Forest, both of which are categorized as Critically Endangered, and the state of the landscape in the High Rio Guayllabamba watershed, Ecuador, during the periods 1991–2005 and 2005–2017. The evaluation was carried out using Landsat satellite images of 30 x 30 m pixels and landscape metrics. We found an advanced state of landscape transformation. Since the 1990s, the loss of both ecosystems was largely caused by the conversion of forest to agriculture, resulting in substantial changes in the spatial configuration of these ecosystems. From 1991 to 2017, 19.8 % and 16.1 % of Inter-Andean Dry Forest and Tropical Montane Forest respectively, were converted to agriculture. The loss of Inter-Andean Dry Forest was 28 % and the number of forest patches increased by more than 150%. The loss of Tropical Montane Forest was 16.5 % and the number of forest patches increased by more than 300 %. The largest loss and fragmentation of forest cover occurred from 1991 to 2005. We suggested planning landscape-scale conservation, using the patch-corridor-matrix model. This model is appropriate given the current configuration of the landscape studied, with Inter-Andean Dry Forest and Tropical Montane Forest restricted to small patches sparsely distributed across the landscape.

Keywords

Aguirre, Z., Kvist, L.P., Sánchez, O., (2006). Bosques secos en Ecuador y su diversidad. In M. Moraes, B. Ollgaard, L.P. Kvist, F. Borchsenius, Balslev, H. (Eds.). Bot nica Económica de los Andes Centrales La Paz Bolivia: Universidad Mayor de San Andrés (pp. 162-187). Search in Google Scholar

Aguirre, Z., Román, J.L., Montalvo, D., Cevallos, G., Albuja, L., Arguero, A., … Carvajal, V., (2011). Biodiversidad de los valles secos interandinos del Ecuador. Ecuaoffset, Escuela Politécnica Nacional,Quito-Ecuador. Search in Google Scholar

Bennett, A.F., (2003). Linkages in the landscape: the role of corridors and connectivity in wildlife conservation. IUCN Gland: Switzerland and Cambridge. UK. Search in Google Scholar

Cadena-Ortíz, H., Varela, S., Bahamonde-Vinueza, D., Freile, J.F., Bonaccorso, D., (2015). Birds of Bosque Protector Jerusalem, Guayllabamba Valley, Ecuador. Check List. 11(5), 1770. https://doi.org/10.15560/11.5.1770. Search in Google Scholar

Chander, G., Markham, B.L., Helder, D.L., (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment. 113, 893-903. https://doi.org/10.1016/j.rse.2009.01.007. Search in Google Scholar

Cisneros-Heredia, D.F., Almendáriz, A., Yánez-Muñoz, M., (2017). Dipsas elegans. The IUCN Red List of Threatened Species. Retrieved April 28, 2020, from http://dx.doi.org/10.2305/IUCN.UK.2017-2.RLTS.T50951285A50951294.en. Search in Google Scholar

Clerici, N., Armenteras, D., Kareiva, P., Botero, R., Ramírez-Delgado, J.P., Forero-Medina, G., … Biggs, D., (2020). Deforestation in Colombian protected areas increased during post-conflict periods. Nature. 10, 4971. https://doi.org/10.1038/s41598-020-61861-y. Search in Google Scholar

Daly, C. (2006). Guidelines for assessing the suitability of spatial climate data sets. International Journal of Climatology. 26, 707-721. https://doi.org/10.1002/joc.1322. Search in Google Scholar

Echeverría, C., Coomes, D., Salas, J., Rey-Benayas, J. M., Lara, A., Newton, A., (2006). Rapid deforestation, and fragmentation of Chilean temperate forests. Biological Conservation. 130, 481-494. http://doi.org/10.1016/j.biocon.2006.01.017. Search in Google Scholar

Echeverría, C., Newton, A., Nahuelhual, L., Coomes, D., Rey-Benayas, J.M., (2012). How landscapes change: integration of spatial patterns and human processes in temperate landscapes of southern Chile. Applied Geography. 32, 822-831. https://doi.org/10.1016/j.apgeog.2011.08.014. Search in Google Scholar

Echeverría, C., Gatica, P., Fuentes, R., (2013). Habitat Edge Contrast as an Indicator to Prioritize Sites for Ecological Restoration at the Landscape Scale. Naturez & Conservação. 11(2), 170-175. http://dx.doi.org/10.4322/natcon.2013.026. Search in Google Scholar

Echeverría, C., Bolados, G., Rodríguez, J., Aguayo, M., Premoli, A., (2014). Ecología de paisajes forestales. In C. Donoso, M.E. González, Lara A. (Eds.). Ecología forestal. Bases para el manejo sustentable y conservación de los bosques nativos de Chile. Santiago de Chile: Ediciones UACh, pp. 583-604. Search in Google Scholar

ESRI, (2016). Environmental Systems Research Institute, Inc. In: 380 New York St., Redlands (pp. 220-225), CA92373-8100, USA. Search in Google Scholar

Ferrer-Paris, J.R., Zager, I., Keith, D.A., Oliveira-Miranda, M.A., Rodríguez, J.P., Josse, C., … Barrow, E., (2018). An ecosystem risk assessment of temperate and tropical forests of the Americas with an outlook on future conservation strategies. Conservation Letters. E12623, 1-10. https://DOI:10.1111/conl.12623. Search in Google Scholar

Foody, G.M., (2002). Statusof land cover classification accuracy assessment. Remote Sensing of Environment. 80, 185–201. Search in Google Scholar

Granados, C., Serrano, D., García-Romero, A., (2014). Efecto de borde en la composición y en la estructura de los Bosques Templados, Sierra de Monte-Alto, Centro de México. Caldasia. 36(2), 269-287. http://dx.doi.org/10.15446/caldasia/v36n2.47486. Search in Google Scholar

Green, J.M., Larrosa, C., Burgess, N.D., Balmford, A., Johnston, A., Mbilinyi, B.P., … Coad, L., (2013). Deforestation in an African biodiversity hotspot: extent, variation, and the effectiveness of protected areas. Biological Conservation. 64, 62-72. https://doi.org/10.1016/j.biocon.2013.04.016 Search in Google Scholar

Haddad, N.M., Brudvig, L.A., Clobert, J., Davies, K.F., Gonzalez, A., Holt, R.D., … Townshend, J., (2015). Fragmentation and its lasting impact on Earth’s ecosystems. Applied Ecology. 1, 1-9. DOI: 10.1126/sciadv.1500052. Search in Google Scholar

Horváth, Z., Ptacnik, R., Vad, C.F., Chase, J.M., (2019). Habitat loss over six decades accelerates regional and local biodiversity loss via changing landscape connectance. Ecological Letters. 22, 1019-1027. doi: 10.1111/ele.13260. Search in Google Scholar

Huete, A.R., (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment. 25, 295-309. Search in Google Scholar

IDRISI., (2012). Selva help system. Clark University: Clark Labs, USA. Search in Google Scholar

Instituto Nacional de Meteorología e Hidrología., (2005). Estudio Hidrológico del Río Mira. Estudios e Investigaciones Hidrológicas. Quito-Ecuador: INAMHI. Search in Google Scholar

Isaac-Cubides, P., Ariza, A., (2016). Monitoreo a la restauración ecológica desde la escala del paisaje. In: M. Aguilar-Garavito, Ramírez W. (Eds.), Monitero a procesos de restauración ecológica aplicado a ecosistemas terrestres (pp. 51-66). Bogotá Colombia: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Search in Google Scholar

IUCN. (2000). Tropical Montane Cloud Forest. WWF International/IUCN, Switzerland. Search in Google Scholar

Laurance, W. F., Lovejoy, T. E., Vasconcelos, H. L., Bruna, E. M., Didham, R. K., Stouffer, P.C., … Sampaio, E. (2002). Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conservation Biological. 16, 605-618. https://doi.org/10.1046/j.1523-1739.2002.01025.x Search in Google Scholar

Lindenmayer, D., Franklin, J., (2002). Conserving forest biodiversity: a comprehensive multiscaled approach. Island Press, Washington. Search in Google Scholar

Lindenmayer, D., Fischer, J., (2006). Habitat fragmentation and landscape change: an ecological and conservation synthesis. Island Press, Washington. Search in Google Scholar

Lindenmayer, D., (2016). Interactions between forest resource management and landscape structure. Current Landscape Ecology Report. 1, 10-18. DOI 10.1007/s40823-016-0002-0. Search in Google Scholar

López-Barrera, F., (2004). Estructura y función en bordes de bosques. Revista Ecosistemas, 13, 55-68. Search in Google Scholar

McGarigal, K., Cushman, S., Neel, M., Ene, E., (2013). FRAGSTATS. Spatial pattern analysis program for categorical maps. University of Massachusetts, Amherst. (Landscape Ecology Program). Retrieved September 30, 2019, from http://www.umass.edu/landeco/research/fragstats/fragstats.html. Search in Google Scholar

McIntyre, S., Hobbs, R., (1999). A framework for conceptualizing human effects on landscapes and its relevance to management and research models. Conservation Biological. 13, 1282-1292. Search in Google Scholar

MECN., (2009). Ecosistemas del Distrito Metropolitano de Quito (DMQ). Ambiental del MDMQ, Quito-Ecuador. Search in Google Scholar

Ministerio del Ambiente del Ecuador., (2013). Sistema de Clasificación de los Ecosistemas del Ecuador Continental. Subsecretaría de Patrimonio Natural, Ministerio del Ambiente, Quito-Ecuador. Search in Google Scholar

Miranda, A., Altamirano, A., Cayuela, L., Lara, A., Gonzalez, M., (2017). Native forest loss in the Chilean biodiversity hotspot: revealing the evidence. Regional Environmental Chang, 17, 285-297. DOI 10.1007/s10113-016-1010-7. Search in Google Scholar

Mittermeier, R.A., Turner, W.R., Larsen, F.W., Brooks, T.M., Gascon, C., (2011). Global biodiversity conservation: the critical role of hotspots. In F.E. Zachos, Habel, J.C. (Eds.), Biodiversity hotspots: distribution and protection of conservation priority areas (pp. 3–23). Berlin: Springer. Search in Google Scholar

Moreno, R.A., Zamora, R., Herrera, M.A., (2014). Habitat selection of endemic birds in temperate forests in a biodiversity “Hotspot”. Forest Systems. 23, 216-224.DOI:10.5424/fs/2014232-03700. Search in Google Scholar

Myers, N., Mittermeier, R.A., Mittermeier, C.G., Da Fonseca, G.A.B., Kent, J., (2000). Biodiversity hotspots for conservation priorities. Nature. 403, 853–858. Search in Google Scholar

NatureServe & EcoDecision., (2015). Hotspot de Biodiversidad de los Andes Tropicales. Argentina, Bolivia, Chile, Colombia, Ecuador, Perú, Estados Unidos and Venezuela: Partnership Fund Critical Ecosystem. Search in Google Scholar

Newton, A.C., (2007). Biodiversity loss and conservation in fragmented forest landscapes: the forests of montane Mexico and temperate South America. Wallingford, Oxford: CABI. Search in Google Scholar

Otavo, S., Echeverría, C., (2017). Fragmentación progresiva y pérdida de hábitat de bosques naturales en uno de los hotspot mundiales de biodiversidad. Revista Mexicana de Biodiversidad. 88, 924-935. Doi:org/10.1016/j.rmb.2017.10.041. Search in Google Scholar

Pacioni, C., Hunt, H., Allentoft, M.E., Vaughan, T.G., Wayne, A.F., Baynes, A. (2015). Genetic diversity loss in a biodiversity hotspot: ancient DNA quantifies genetic decline and former connectivity in a critically endangered marsupial. Molecular Ecology. 24, 5813-5828. doi: 10.1111/mec.13430. Search in Google Scholar

Paviolo, A., DeAngelo, C., Ferraz, K., Morato, R.G., Pardo, J.M., Srbek-Araujo, A.C., (2016). A biodiversity hotspot losing its top predator: The challenge of jaguar conservation in the Atlantic Forest of South America. Nature. 6, 1-16. DOI: 10.1038/srep37147. Search in Google Scholar

Peng, J., Wang, Y., Zhang, Y., Wu, J., Li, W., Li, Y., (2010). Evaluating the effectiveness of landscape metrics in quantifying spatial patterns. Ecological Indicators. 10, 217-223. Doi:org/10.1016/j.ecolind.2009.04.017. Search in Google Scholar

Peyras, M., Vespa, N.I., Bellocq, M.I., Zurita, G.A., (2013). Quantifying edge effects: the role of habitat contrast and species specialization. Journal of Insect Conservation. 17, 807-820. https://DOI10.1007/s10841-013-9563-y. Search in Google Scholar

Reddy, C.S., Sreelekshmi, S., Jha, C., Dadhwal, V., (2013). National assessment of forest fragmentation in India: landscape indices as measures of the effects of fragmentation and forest cover change. Ecological Engineering. 60, 453-464. Doi:org/10.1016/j.ecoleng. 2013.09.064. Search in Google Scholar

Reese, H., Olsson, H., (2011). C-correction of optical satellite data over alpine vegetation areas: a comparison of sampling strategies for determining the empirical c-parameter. Remote Sensing of Environment. 115, 1387-1400. Doi:org/10.1016/j.rse.2011.01.019. Search in Google Scholar

Reino, L., Beja, P., Osborne, P.E., Morgado, R., Fabião, A., Rotenberry, J.T., (2009). Distance to edges, edge contrast and landscape fragmentation: interactions affecting farmland birds around forest plantations. Biological Conservation. 142, 824-838. Doi:org/10.1016/j.biocon.2008.12.011. Search in Google Scholar

Rodríguez-Echeverry, J., Echeverría, C., Nahuelhual, L., (2015). Impacts of anthropogenic land-use change on populations of the Endangered Patagonian cypress Fitzroya cupressoides in southern Chile: implications for its conservation. Oryx. 49(3),447-452. DOI: https://doi.org/10.1017/S0030605314000945. Search in Google Scholar

Rodríguez-Echeverry, J., Echeverría, C., Oyarzún, C., Morales, L., (2017). Spatial Congruence between Biodiversity and Ecosystem Services in an Anthropic Landscape in Southern Chile: Basis for Conservation Planning. Bosque. 38(3), 495-507. DOI: 10.4067/S0717-92002017000300007. Search in Google Scholar

Rodríguez-Echeverry, J., Echeverría, C., Oyarzún, C., Morales, L., (2018a). Impact of land-use changeon biodiversity and ecosystem services in the Chilean temperate forests. Landscape Ecology. 3(3), 439-453. DOI 10.1007/s10980-018-0612-5. Search in Google Scholar

Rodríguez-Echeverry, J., Fuentes, R., Leiton, M., Jaque, E., (2018b). Changing Landscapes Forest: Implications for its Conservation. Environment and Natural Resource Research. 8(3), 44-54. Doi:org/10.5539/enrr.v8n3p44. Search in Google Scholar

Rodríguez-Echeverry, J., Leiton, M., (2019). Conservation Planning in Anthropogenic Landscapes. Ecology and Conservation Science. 1(1), 555-552. Search in Google Scholar

Rodríguez, N., Armenteras, D., Retana, J., (2013). Land use and land cover change in the Colombian Andes: dynamics and future scenarios. Journal of Land Use Science. 8(2), 154-174 Search in Google Scholar

Sano, M., Miyamoto, A., Furuya, N., Kogi, K., (2009). Using landscape metrics and topographic analysis to examine forest management in a mixed forest, Hokkaido, Japan: Guidelines for management interventions and evaluation of cover changes. Forest Ecology and Management. 257, 1208-1218. Doi.org/10.1016/j.foreco.2008.10.005. Search in Google Scholar

Sarmiento, F., (1995). Human Impacts on the Cloud Forests of the Upper Guayllabamba River Basin, Ecuador, and Suggested Management Responses. In L.S. Hamilton, J.O. Juvik, Scatena, F.N. (Eds.), Tropical Montane Cloud Forest. Springer-Verlag, New York, pp. 284-295. Search in Google Scholar

Sierra, R., (2013). Patrones y factores de deforestación en el Ecuador continental, 1990-2010. Conservación Internacional Ecuador y Forest Trends, Quito-Ecuador. Search in Google Scholar

Sistema Nacional de Información., (2019). Mapa de cobertura y uso de la tierra. Retrieved May 21, 2020, from http://sni.gob.ec. Search in Google Scholar

Tapia-Armijos, M.F., Homeier, J., Espinosa, C. I., Leuschner, C., de la Cruz, M., (2015). Deforestation and forest fragmentation in South Ecuador since the 1970s losing a hotspot of biodiversity. PloS One. 10(9), e0133701. Doi:10.1371/journal.pone.0133701. Search in Google Scholar

Thompson, P.L., Rayfield, B., Gonzalez, A., (2017). Loss of habitat and connectivity erodes species diversity, ecosystem functioning, and stability in metacommunity networks. Ecography. 40, 98-108. Doi: 10.1111/ecog.02558. Search in Google Scholar

Torrella, S.A., Ginzburg, R.G., Adámoli, J.M., Galetto, L., (2013). Changes in forest structure and tree recruitment in Argentinean Chaco: Effects of fragment size and landscape forest cover. Forest Ecology and Management. 307, 147-154. http://dx.doi.org/10.1016/j.foreco.2013.07.016 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo