1. bookVolume 69 (2021): Issue 2 (June 2021)
Journal Details
License
Format
Journal
eISSN
1338-4333
First Published
28 Mar 2009
Publication timeframe
4 times per year
Languages
English
access type Open Access

Variability of topsoil hydraulic conductivity along the hillslope transects delineated in four areas strongly affected by soil erosion

Published Online: 21 May 2021
Volume & Issue: Volume 69 (2021) - Issue 2 (June 2021)
Page range: 220 - 231
Received: 04 Feb 2021
Accepted: 29 Mar 2021
Journal Details
License
Format
Journal
eISSN
1338-4333
First Published
28 Mar 2009
Publication timeframe
4 times per year
Languages
English
Abstract

Soil hydraulic conductivities of topsoils were studied at 5 points of the hillslope transects delineated at 4 geomorphologically diverse areas, where the original soil types (Chernozem, Luvisol and two Cambisols) were due to erosion transformed into different soil unites. Hydraulic conductivities of saturated soils and for a pressure head of –2 cm were measured directly in the field using a Guelph permeameter (Ks,GP) and mini disk tension infiltrometer (Kh=–2,MDI), and in the laboratory using a multistep outflow method (Ks,MSO, Kh= –2,MSO). While Ks,GPKs,MSO in the Chernozem and Cambisol (sandy loam) regions, and Ks,GP < Ks,MSO in the Luvisol and Cambisol (loam) regions. The Ks values obtained using different methods showed different trends along the hillslope transects. The Kh= –2 values obtained using different methods showed similar trends along the transects in the Chernozem and Luvisol regions. These trends could be explained by the position within the transects (i.e., different stages of erosion/accumulation processes). No relationships were found between the Kh=–2 values in the Cambisol regions. The pressure head at an inflection point of the a soil-water retention curve was the main parameter, which appeared to associate (negative correlation) with Kh=–2 and Ks,MSO in the Chernozem and Luvisol regions.

Keywords

Alletto, L., Coquet, Y., 2009. Temporal and spatial variability of soil bulk density and near-saturated hydraulic conductivity under two contrasted tillage management system. Geoderma, 152, 85–94.10.1016/j.geoderma.2009.05.023 Search in Google Scholar

Cantón, Y., Solé–Benet, A., Asensio, C., Chamizo, S., Puigdefábregas, J., 2009. Aggregate stability in range sandy loam soils relationships with runoff and erosion. Catena, 77, 192–199.10.1016/j.catena.2008.12.011 Search in Google Scholar

Centeno, L.N., Timm, L.C., Reichardt, K., Beskow, S., Caldeira, T.L., de Oliveira, L.M., Wendroth, O., 2020. Identifying regionalized co-variate driving factors to assess spatial distributions of saturated soil hydraulic conductivity using multivariate and state-space analyses. Catena, 191, 104583.10.1016/j.catena.2020.104583 Search in Google Scholar

Chandrasekhar, P., Kreiselmeier, J., Schwen, A., Weninger, T., Julich, S., Feger, K.-H., Schwärzel, K., 2018. Why we should include soil structural dynamics of agricultural soils in hydrological models. Water, 10, 1862.10.3390/w10121862 Search in Google Scholar

Dexter, A.R., 2004a. Soil physical quality Part I. Theory effect of soil texture density and organic matter and effect on root growth. Geoderma, 120, 201–214.10.1016/j.geoderma.2003.09.004 Search in Google Scholar

Dexter, A.R., 2004b. Soil physical quality Part II. Friability tillage tilth and hard–setting. Geoderma, 120, 215–226.10.1016/j.geoderma.2003.09.005 Search in Google Scholar

Dexter, A.R., 2004c. Soil physical quality Part III. Unsaturated hydraulic conductivity and general conclusions about S– theory. Geoderma, 120, 227–239.10.1016/j.geoderma.2003.09.006 Search in Google Scholar

Dexter, A.R., Czyz, E.A., 2007. Application of S–theory in study of soil physical degradation and its consequences. Land Degrad. Dev., 18, 369–381.10.1002/ldr.779 Search in Google Scholar

Elrick, D.E., Reynolds W.D., Tan, K.A., 1989. Hydraulic conductivity measurements in the unsaturated zone using improved well analyses. Ground Water Monit. Rev., 9, 184–193.10.1111/j.1745-6592.1989.tb01162.x Search in Google Scholar

Fér, M., Kodešová, R., Nikodem, A., Jirků, V., Jakšík, O., Němeček, K., 2016. The impact of the permanent grass cover or conventional tillage on hydraulic properties of Haplic Cambisol developed on paragneiss substrate. Biologia, 71, 10, 1144–1150.10.1515/biolog-2016-0133 Search in Google Scholar

Fér, M., Kodešová, R., Nikodem, A., Jelenová, K., Klement, A., 2018. Influence of soil–water content on CO2 efflux within the elevation transect heavily impacted by erosion. Ecohydrology, 11, 6, e1989.10.1002/eco.1989 Search in Google Scholar

Fér, M., Kodešová, R., Hroníková, S., Nikodem, A., 2020. The effect of 12-year ecological farming on the soil hydraulic properties and repellency index. Biologia, 75, 795–798.10.2478/s11756-019-00373-1 Search in Google Scholar

Florinsky, I.V., Eilers, R.G., Manning, G.R., Fuller, L.G., 2002. Prediction of soil properties by digital terrain modelling. Environ. Model. Softw., 17, 3, 95–311.10.1016/S1364-8152(01)00067-6 Search in Google Scholar

Gardner, W.R., 1958. Some steady state solutions of unsaturated moisture flow equations with application to evaporation from a water table. Soil Sci., 85, 228–232.10.1097/00010694-195804000-00006 Search in Google Scholar

Gribb, M.M., Kodešová, R., Ordway, S.E., 2004. Comparison of soil hydraulic property measurement methods. J. Geotech. Geoenviron. Eng., 130, 1084–1095.10.1061/(ASCE)1090-0241(2004)130:10(1084) Search in Google Scholar

Grundwald, S. Ed., 2005. Environmental Soil–Landscape Modeling. CRC Press. Search in Google Scholar

Herbst, M., Diekkrüger, B., Vereecken, H., 2006. Geostatistical co–regionalization of soil hydraulic properties in a micro– scale catchment using terrain attributes. Geoderma, 132, 1–2, 206–221.10.1016/j.geoderma.2005.05.008 Search in Google Scholar

IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome. Search in Google Scholar

Jakšík, O., Kodešová, R., Kubiš, A., Stehlíková, I., Drábek, O., Kapička, A., 2015. Soil aggregate stability within morphologically diverse areas. Catena, 127, 287–299.10.1016/j.catena.2015.01.010 Search in Google Scholar

Jakšík, O., Kodešová, R., Kapička, A., Klement, A., Fér, M., Nikodem, A., 2016. Using magnetic susceptibility mapping for assessing soil degradation due to water erosion. Soil Water Res., 11, 2, 105–113.10.17221/233/2015-SWR Search in Google Scholar

Jirků, V., Kodešová, R., Nikodem, A., Mühlhanselová, M., Žigová, A., 2013. Temporal variability of structure and hydraulic properties of topsoil of three soil types. Geoderma, 204–205, 43–58.10.1016/j.geoderma.2013.03.024 Search in Google Scholar

Kodešová, R., Rohošková, M., Žigová, A., 2009. Comparison of aggregate stability within six soil profiles under conventional tillage using various laboratory tests. Biologia, 64, 3, 550–554.10.2478/s11756-009-0095-6 Search in Google Scholar

Kodešová, R., Šimůnek, J., Nikodem, A., Jirků, V., 2010. Estimation of parameters of the radially-symmetric dual-permeability model using tension disc infiltrometer and Guelph permeameter experiments. Vadose Zone J., 9, 213–225.10.2136/vzj2009.0069 Search in Google Scholar

Kodešová, R., Jirků, V., Kodeš, V., Mühlhanselová, M., Nikodem, A., Žigová, A., 2011. Soil structure and soil hydraulic properties of Haplic Luvisol used as arable land and grassland. Soil Till. Res., 111, 2, 154–161.10.1016/j.still.2010.09.007 Search in Google Scholar

Lark, R.M., Beckett, P.H.T., 1998. A geostatistical descriptor of the spatial distribution of soil classes, and its use in predicting the purity of possible soil map units. Geoderma, 83, 3–4, 243–267.10.1016/S0016-7061(97)00144-4 Search in Google Scholar

Lichner, L., Iovino, M., Šurda, P., Nagy, V., Zvala, A., Kollár, J., Pecho, J., Píš, V., Sepehrnia, N., Sándor, R., 2020. Impact of secondary succession in abandoned fields on some properties of acidic sandy soils. J. Hydrol. Hydromech., 68, 1, 12–18.10.2478/johh-2019-0028 Search in Google Scholar

Mayer, S., Kühnel, A., Burmeister, J., Kögel-Knabner, I., Wiesmeier, M., 2019. Controlling factors of organic carbon stocks in agricultural topsoils and subsoils of Bavaria. Soil Till. Res., 192, 22–32.10.1016/j.still.2019.04.021 Search in Google Scholar

Meter Group AG., 2020. Mini Disk Infiltrometer. Mettlacher Straße 8, München. http://publications.metergroup.com/Manuals/20421_Mini_Disk_Manual_Web.pdf Search in Google Scholar

Miller, B.A., Schaetzl, R.J., 2015. Digital classification of hillslope position. Soil Sci. Soc. Am. J., 79, 132–145.10.2136/sssaj2014.07.0287 Search in Google Scholar

Moore, I.D., Gessler, P.E., Nielsen, G.A., Peterson, G.A., 1993. Soil attribute prediction using terrain analysis. Soil Sci. Soc. Am. J., 57, 443–452.10.2136/sssaj1993.03615995005700020026x Search in Google Scholar

Mualem, Y., 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res., 12, 3, 513–522.10.1029/WR012i003p00513 Search in Google Scholar

Nikodem, A., Kodešová. R., Fér, M., Klement, A., 2021. Using scaling factors for characterizing spatial and temporal variability of soil hydraulic properties of topsoils in areas heavily affected by soil erosion. J. Hydrol., 593, 125897.10.1016/j.jhydrol.2020.125897 Search in Google Scholar

Nimmo J.R., Perkins K.S., 2002. Aggregate stability and size distribution. In: Dane, J.H., Topp, G.C. (Eds.): Methods of Soil Analysis, Part 4 – Physical Methods. SSSA, Madison, pp. 317–328.10.2136/sssabookser5.4.c14 Search in Google Scholar

Papanicolaou, A.N., Elhakeem, M., Wilson, C.G., Burras, C.L., West, L.T., Lin, H., Clark, B., Oneal, B.E., 2015. Spatial variability of saturated hydraulic conductivity at the hillslope scale: Understanding the role of land management and erosional effect. Geoderma, 243–244, 58–68.10.1016/j.geoderma.2014.12.010 Search in Google Scholar

Pavlů, L., Kodešová, R., Fér, M., Nikodem, A., Němec, F., Prokeš, R, 2021. The impact of various mulch types on soil properties controlling water regime of the Haplic Fluvisol. Soil Till. Res., 205, 104748.10.1016/j.still.2020.104748 Search in Google Scholar

Penížek, V., Zádorová, T., Kodešová, R., Vaněk, A., 2016. Influence of elevation data resolution on spatial prediction of colluvial soils in a luvisol region. PloS ONE, 11, 11, 165699.10.1371/journal.pone.0165699 Search in Google Scholar

Pennock, D.J., 2003. Terrain attributes, landform segmentation, and soil redistribution. Soil Till. Res., 69, 15–26.10.1016/S0167-1987(02)00125-3 Search in Google Scholar

Reynolds, W.D., Elrick, D.E., 1991. Determination of hydraulic conductivity using a pension infiltrometer. Soil Sci. Soc. Am. J., 55, 633–639.10.2136/sssaj1991.03615995005500030001x Search in Google Scholar

Reynolds, W.D., Elrick D.E., Youngs, E.G., Amoozegar, A., Booltink, H.W.G., Bouma, J., 2002. Saturated and field-saturated water flow parameters. In: Dane, J., Topp, C. (Eds.): Methods of Soil Analysis. Part 4: Physical Methods. Soil Science Society of America, Inc., Madison, USA, pp. 797–878. Search in Google Scholar

Romano, N., Palladino, M., 2002. Prediction of soil water retention using soil physical data and terrain attributes. J. Hydrol., 265, 1–4, 56–75.10.1016/S0022-1694(02)00094-X Search in Google Scholar

Sagova-Mareckova, M., Zadorova, T., Penizek, V., Omelka, M., Tejnecky, V., Pruchova, P., Chuman, T., Drabek, O., Buresova, A., Vanek, A., Kopecky, J., 2016. The structure of bacterial communities along two vertical profiles of a deep colluvial soil. Soil Biol. Biochem., 101, 65–73.10.1016/j.soilbio.2016.06.026 Search in Google Scholar

Sándor, R., Iovino, M., Lichner, L., Alagna, V., Forster, D., Fraser, M., Kollár, J., Šurda, P., Nagy, V., Szabó, A., Fodor, N., 2021. Impact of climate, soil properties and grassland cover on soil water repellency. Geoderma, 383, 114780.10.1016/j.geoderma.2020.114780 Search in Google Scholar

Sarapatka, B., Cap, L., Bila, P., 2018. The varying effect of water erosion on chemical and biochemical soil properties in different parts of Chernozem slopes. Geoderma, 314, 20–26.10.1016/j.geoderma.2017.10.037 Search in Google Scholar

Sepehrnia, N., Woche, S.K., Goebel, M.-O., Bachmann, J., 2020. Development of a universal microinfiltrometer to estimate extent and persistence of soil water repellency as a function of capillary pressure and interface chemical composition. J. Hydrol. Hydromech., 68, 4, 392–403.10.2478/johh-2020-0035 Search in Google Scholar

Schwen, A., Bodner, G., Loiskandl, W., 2011a. Time-variable soil hydraulic properties in near–surface soil water simulations for different tillage methods. Agric. Water Manag., 99, 42–50.10.1016/j.agwat.2011.07.020 Search in Google Scholar

Schwen, A., Bodner, G., Scholl, P., Buchan, G., Loiskandl, W., 2011b. Temporal dynamic of soil hydraulic properties and the water–conducting porosity under different tillage. Soil Till. Res., 113, 89–98.10.1016/j.still.2011.02.005 Search in Google Scholar

Sobieraj, J.A., Elsenbeer, H., Coelho, R.M., Newton, B., 2002. Spatial variability of soil hydraulic conductivity along a tropical rainforest catena. Geoderma, 108, 1–2, 79–90.10.1016/S0016-7061(02)00122-2 Search in Google Scholar

Soilmoisture Equipment Corp. 2012. Model 2800K1 Guelph Permeameter Operating Instructions. Soilmoisture Equipment Corp., Santa Barbara, CA. https://www.soilmoisture.com/pdfs/Resource_Instructions_0898-2800_2800K1%20Guelph%20Permeameter%20.pdf Search in Google Scholar

StatSoft Inc., 2013. STATISTICA (data analysis software system) version 12. www.statsoft.com Search in Google Scholar

Stoops, G., 2003. Guidelines for Analysis and Desription of Soils and Regolith Thin Sections. Soil Science Society of America, Inc. Madison, Wisconsin, USA, 184 p. Search in Google Scholar

van Dam, J.C., Stricker, J.M.N., Droogers, P., 1994. Inverse method to determine soil hydraulic function from multi-step outflow experiment. Soil Sci. Soc. Am. J., 58, 3, 647–652.10.2136/sssaj1994.03615995005800030002x Search in Google Scholar

van Genuchten, M.Th., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44, 5, 892–898.10.2136/sssaj1980.03615995004400050002x Search in Google Scholar

Vašát, R., Kodešová, R., Borůvka, L., Klement, A., Jakšík, O., Gholizadeh, A., 2014. Consideration of peak parameters derived from continuum-removed spectra to predict extractable nutrients in soils with visible and near-infrared diffuse reflectance spectroscopy (VNIR-DRS). Geoderma, 232–234, 208–218.10.1016/j.geoderma.2014.05.012 Search in Google Scholar

Vašát, R., Kodešová, R., Borůvka, L., Jakšík, O., Klement, A., Drábek, O., 2015a. Absorption features in soil spectra assessment. Appl. Spectrosc., 69, 12, 1425–1431.10.1366/14-0780026555184 Search in Google Scholar

Vašát, R., Kodešová, R., Klement, A., Jakšík, O., 2015b. Predicting oxidizable carbon content via visible- and near-infrared diffuse reflectance spectroscopy in soils heavily affected by water erosion. Soil Water Res., 10, 2, 74–77.10.17221/18/2015-SWR Search in Google Scholar

Vašát, R., Kodešová, R., Borůvka, L., 2017a. Ensemble predictive model for more accurate soil organic carbon spectroscopic estimation. Comput. Geosci., 104, 75–83.10.1016/j.cageo.2017.04.008 Search in Google Scholar

Vašát, R., Kodešová, R., Borůvka, L., Jakšík, O., Klement, A., Brodský, L., 2017b. Combining reflectance spectroscopy and the digital elevation model for soil oxidizable carbon estimation. Geoderma, 303, 133–142.10.1016/j.geoderma.2017.05.018 Search in Google Scholar

Vašát, R., Kodešová, R., Klement, A., Borůvka, L., 2017c. Simple but efficient signal pre-processing in soil organic carbon spectroscopic estimation. Geoderma, 298, 46–53.10.1016/j.geoderma.2017.03.012 Search in Google Scholar

Villarreal, R., Lozano, L.A., Salazar, M.P., Bellora, G.L., Melani, E.M., Polich, N., Soracco, C.G., 2020. Pore system configuration and hydraulic properties. Temporal variation during the crop cycle in different soil types of Argentinean Pampas Region. Soil Till. Res., 198, 104528.10.1016/j.still.2019.104528 Search in Google Scholar

Watson, K.W., Luxmoore, R.J., 1986. Estimating macroporosity in a forest watershed by use of a tension infiltrometer. Soil Sci. Soc. Am. J., 50, 578–582.10.2136/sssaj1986.03615995005000030007x Search in Google Scholar

Wooding, R.A., 1968. Steady infiltration from a shallow circular pond. Water Resour. Res., 4, 1259–1273.10.1029/WR004i006p01259 Search in Google Scholar

Zádorová, T., Penížek, V., Šefrna, L., Rohošková, M., Borůvka, L., 2011a. Spatial delineation of OC-rich Colluvial soils in Chernozem regions by terrain analysis and fuzzy classification. Catena, 85, 22–33.10.1016/j.catena.2010.11.006 Search in Google Scholar

Zádorová, T., Jakšík, O., Kodešová, R., Penížek, V., 2011b. Influence of terrain attributes and soil properties on soil aggregate stability. Soil Water Res., 6, 111–119.10.17221/15/2011-SWR Search in Google Scholar

Zádorová, T., Penížek, V., Šefrna, L., Drábek, O., Mihaljevič, M., Volf, Š., Chuman, T., 2013. Identification of Neolithic to modern erosion-sedimentation phases using geochemical approach in a loess covered sub-catchment of South Moravia, Czech Republic. Geoderma, 195–196, 56–69.10.1016/j.geoderma.2012.11.012 Search in Google Scholar

Zádorová, T., Žížala, D., Peňížek, V., Čejková, Š., 2014. Relating extent of colluvial soils to topographic derivatives and soil variables in a Luvisol sub-catchment, central Bohemia, Czech Republic. Soil Water Res., 2, 47–57.10.17221/57/2013-SWR Search in Google Scholar

Zádorová, T., Penížek, V., Vašát, R., Žížala, D., Chuman, T., Vaněk, A., 2015. Colluvial soils as a soil organic carbon pool in different soil regions. Geoderma, 253–254, 122–134.10.1016/j.geoderma.2015.04.012 Search in Google Scholar

Zádorová, T., Penížek, V., 2018. Formation, morphology and classification of colluvial soils: a review. Eur. J. Soil Sci., 69, 577–591.10.1111/ejss.12673 Search in Google Scholar

Zhang, R., 1997. Determination of soil sorptivity and hydraulic conductivity from the disk infiltrometer. Soil Sci. Soc. Am. J., 61, 1024–1030.10.2136/sssaj1997.03615995006100040005x Search in Google Scholar

Zhang, Z.F., Groenevelt, P.H., Parkin, G.W., 1998. The well-shape factor for the measurement of soil hydraulic properties using the Guelph permeameter. Soil Till. Res., 49, 219–221.10.1016/S0167-1987(98)00174-3 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo