1. bookVolume 69 (2021): Issue 2 (June 2021)
Journal Details
First Published
28 Mar 2009
Publication timeframe
4 times per year
access type Open Access

Water transmission properties of a sandy-loam soil estimated with Beerkan runs differing by the infiltration time criterion

Published Online: 21 May 2021
Page range: 151 - 160
Received: 13 Feb 2021
Accepted: 13 Apr 2021
Journal Details
First Published
28 Mar 2009
Publication timeframe
4 times per year

The Beerkan method consists of a ponded infiltration experiment from a single ring inserted a small depth into the soil. Fixed, small volumes of water are repeatedly poured into the ring to maintain a quasi-zero head on the soil surface. According to the standard Beerkan infiltration run, a new water volume is poured on the infiltration surface when the previously applied volume has completely infiltrated and the soil surface is entirely exposed to air (ta criterion). However, water could also be applied when the soil exposition to air begins (to criterion) or half the soil surface is exposed to air (tm criterion). The effect of the infiltration time criterion on determination of the water transmission properties of a sandy-loam soil was tested. As compared with the standard ta criterion, the two alternative criteria (to, tm) yielded higher and/or more variable estimates of soil water transmission properties. The saturated soil hydraulic conductivity, Ks, was the most sensitive property to the infiltration time criterion. However, statistically significant differences for Ks were not practically substantial since they did not exceed a factor of 1.7. Infiltration time effects likely occurred due to differences between ponding depth of water, soil water pressure head gradient, air entrapment and soil mechanical disturbance. The standard ta criterion was suggested for performing a Beerkan experiment in the field since it appears to yield the most reliable estimates of a mean value. However, the to criterion could be considered in dual permeability soils to maintain macropores active. Factors that could appear minor in the context of an experiment can have statistically relevant effects on water transmission properties.


Alagna, V., Bagarello, V., Cecere, N., Concialdi, P., Iovino, M., 2018. A test of water pouring height and run intermittence effects on single-ring infiltration rates. Hydrol. Process., 32, 3793–3804. DOI: 10.1002/hyp.13290 Search in Google Scholar

Alagna, V., Bagarello, V., Di Prima, S., Giordano, G., Iovino, M., 2016. Testing infiltration run effects on the estimated water transmission properties of a sandy-loam soil. Geoderma, 267, 24–33. DOI: 10.1016/j.geoderma.2015.12.029 Search in Google Scholar

Angulo-Jaramillo, R., Bagarello, V., Di Prima, S., Gosset, A., Iovino, M., Lassabatere, L., 2019. Beerkan Estimation of Soil Transfer parameters (BEST) across soils and scales. Invited Review Paper. J. Hydrol., 576, 239–261. DOI: 10.1016/j.jhydrol.2019.06.007 Search in Google Scholar

Angulo-Jaramillo, R., Bagarello, V., Iovino, M., Lassabatere, L., 2016. Infiltration Measurements for Soil Hydraulic Characterization. Springer International Publishing, Cham, 383 p. Search in Google Scholar

Auteri, N., Bagarello, V., Concialdi, P., Iovino, M., 2020. Testing an adapted beerkan infiltration run for a hydrologically relevant soil hydraulic characterization. J. Hydrol., 584, 12469714. DOI: 10.1016/j.jhydrol.2020.124697 Search in Google Scholar

Bagarello, V., David, S.M., 2020. Run duration effects on the hydrodynamic properties of a loam soil estimated by steady-state infiltration methods. Journal of Agricultural Engineering, 51, 4, 229–238. DOI:10.4081/jae.2020.1075 Search in Google Scholar

Bagarello, V., Sgroi, A., 2007. Using the simplified falling head technique to detect temporal changes in field-saturated hydraulic conductivity at the surface of a sandy loam soil. Soil Till. Res., 94, 283–294. Search in Google Scholar

Bagarello, V., Di Prima, S., Iovino, M., 2014. Comparing alternative algorithms to analyze the beerkan infiltration experiment. Soil Sci. Soc. Am. J., 78, 724–736. DOI: 10.2136/sssaj2013.06.0231 Search in Google Scholar

Braud, I., De Condappa, D., Soria, J.M., Haverkamp, R., Angulo-Jaramillo, R., Galle, S., Vauclin, M., 2005. Use of scaled forms of the infiltration equation for the estimation of un-saturated soil hydraulic properties (the Beerkan method). Eur. J. Soil Sci., 56, 361–374. Search in Google Scholar

Cislerova, M., Simunek, J., Vogel, T., 1988. Changes of steady-state infiltration rates in recurrent ponding infiltration experiments. J. Hydrol., 104, 1–16. Search in Google Scholar

Concialdi, P., Di Prima, S., Bhanderi, H.M., Stewart, R.D., Abou Najm, M.R., Lal Gaur, M., Angulo-Jaramillo, R., Lassabatere, L., 2020. An open-source instrumentation package for intensive soil hydraulic characterization. J. Hydrol., 582, 124492. DOI: 10.1016/j.jhydrol.2019.124492 Search in Google Scholar

Di Prima, S., 2015. Automated single ring infiltrometer with a low-cost microcontroller circuit. Comput. Electron. Agr., 118, 390–395. Search in Google Scholar

Di Prima, S., Lassabatere, L., Bagarello, V., Iovino, M., Angulo-Jaramillo, R., 2016. Testing a new automated single ring infiltrometer for Beerkan infiltration experiments. Geoderma 262, 20–34. DOI: 10.1016/j.geoderma.2015.08.006 Search in Google Scholar

Di Prima, S., Concialdi, P., Lassabatere, L., Angulo-Jaramillo, R., Pirastru, M., Cerdà, A., Keesstra, S., 2018. Laboratory testing of Beerkan infiltration experiments for assessing the role of soil sealing on water infiltration. Catena, 167, 373–384. DOI: 10.1016/j.catena.2018.05.013 Search in Google Scholar

Di Prima, S., Stewart, R.D., Castellini, M., Bagarello, V., Abou Najm, M.R., Pirastru, M., Giadrossich, F., Iovino, M., Angulo-Jaramillo, R., Lassabatere, L., 2020. Estimating the macroscopic capillary length from Beerkan infiltration experiments and its impact on saturated soil hydraulic conductivity predictions. J. Hydrol., 589, 125159. DOI: 10.1016/j.jhydrol.2020.125159 Search in Google Scholar

Dohnal, M., Vogel, T., Dusek, J., Votrubova, J., Tesar, M., 2016. Interpretation of ponded infiltration data using numerical experiments. J. Hydrol. Hydromech., 64, 3, 289–299. Search in Google Scholar

Dušek, J., Dohnal, M., Vogel, T., 2009. Numerical analysis of ponded infiltration experiment under different experimental conditions. Soil Water Res., 4, S22–S27. Search in Google Scholar

Elrick, D.E., Reynolds, W.D., 1992a. Infiltration from constant-head well permeameters and infiltrometers. In: Topp, G.C., Reynolds, W.D., Green, R.E. (Eds.): Advances in measurement of soil physical properties: Bringing theory into practice (SSSA special publication no. 30, pp. 1–24). Madison: Soil Science Society of America, Inc. Search in Google Scholar

Elrick, D.E., Reynolds, W.D., 1992b. Methods for analyzing constant-head well permeameter data. Soil Sci. Soc. Am. J., 56, 320–323. Search in Google Scholar

Haverkamp, R., Ross, P.J., Smettem, K.R.J., Parlange, J.Y., 1994. Three-dimensional analysis of infiltration from the disc infiltrometer. 2. Physically-based infiltration equation. Water Resour. Res., 30, 2931–2935. Search in Google Scholar

Iovino, M., Castellini, M., Bagarello, V., Giordano, G., 2016. Using static and dynamic indicators to evaluate soil physical quality in a Sicilian area. Land Degrad. Dev., 27, 200–210. DOI: 10.1002/ldr.2263 Search in Google Scholar

Iovino, M., Angulo-Jaramillo, R., Bagarello, V., Gerke, H.H., Jabro, J., Lassabatere, L., 2017. Thematic Issue on Soil Water Infiltration. J. Hydrol. Hydromech., 65, 3, 205–208. DOI: 10.1515/johh-2017-0036 Search in Google Scholar

Lassabatere, L., Angulo-Jaramillo, R., Soria Ugalde, J.M., Cuenca, R., Braud, I., Haverkamp, R. 2006. Beerkan estimation of soil transfer parameters through infiltration experiments -BEST. Soil Sci. Soc. Am. J., 70, 2, 521–535. DOI: 10.2136/sssaj2005.0026 Search in Google Scholar

Lassabatere, L., Di Prima, S., Bouarafa, S., Iovino, M., Bagarello, V., Angulo-Jaramillo, R., 2019a. BEST-2K method for characterizing dual-permeability unsaturated soils with ponded and tension infiltrometers. Vadose Zone J., 18, 180124. DOI: 10.2136/vzj2018.06.0124 Search in Google Scholar

Lassabatere, L., Di Prima, S., Angulo-Jaramillo, R., Keesstra, S., Salesa, D., 2019b. Beerkan multi-runs for characterizing water infiltration and spatial variability of soil hydraulic properties across scales. Hydrolog. Sci. J., 64, 2, 165–178. DOI: 10.1080/02626667.2018.1560448 Search in Google Scholar

Lassabatere, L., Yilmaz, D., Peyrard, X., Peyneau, P.E., Lenoir, T., Šimůnek, J., Angulo-Jaramillo, R., 2014. New analytical model for cumulative infiltration into dual-permeability soils. Vadose Zone Journal, 13, 1–15. DOI: 10.2136/vzj2013.10.0181 Search in Google Scholar

Lee, D.M., Reynolds, W.D., Elrick, D.E., Clothier, B.E., 1985. A comparison of three field methods for measuring saturated hydraulic conductivity. Can. J. Soil Sci., 65, 563–573. Search in Google Scholar

Lilliefors, H.W., 1967. On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J. Am. Stat. Assoc., 62, 318, 399–402. Search in Google Scholar

Mubarak, I., Mailhol, J.C., Angulo-Jaramillo, R., Ruelle, P., Boivin, P., Khaledian, M., 2009. Temporal variability in soil hydraulic properties under drip irrigation. Geoderma, 150, 158–165. Search in Google Scholar

Ndiaye, B., Esteves, M., Vandervaere, J.-P., Lapetite, J.-M., Vauclin, M., 2005. Effect of rainfall and tillage direction on the evolution of surface crusts, soil hydraulic properties and runoff generation for a sandy loam soil. J. Hydrol., 307, 1–4, 294–311. DOI: 10.1016/j.jhydrol.2004.10.016 Search in Google Scholar

Picciafuoco, T., Morbidelli, R., Flammini, A., Saltalippi, C., Corradini, C., Strauss, P., Blöschl, G., 2019. On the estimation of spatially representative plot scale saturated hydraulic conductivity in an agricultural setting. J. Hydrol., 570, 106–117. DOI: 10.1016/j.jhydrol.2018.12.044 Search in Google Scholar

Reynolds, W.D., Elrick, D.E., 1990. Ponded infiltration from a single ring: I. Analysis of steady flow. Soil Sci. Soc. Am. J., 54, 1233–1241. Search in Google Scholar

Reynolds, W.D., Gregorich, E.G., Curnoe, W.E., 1995. Characterisation of water transmission properties in tilled and untilled soils using tension infiltrometers. Soil Till. Res., 33, 2, 117‒131. Search in Google Scholar

Reynolds, W.D., Bowman, B.T., Brunke, R.R., Drury, C.F., Tan, C.S., 2000. Comparison of tension infiltrometer, pressure infiltrometer, and soil core estimates of saturated hydraulic conductivity. Soil Sci. Soc. Am. J., 64, 478–484. DOI: 10.2136/sssaj2000.642478x Search in Google Scholar

Smith, R.E., 1999. Technical note: Rapid measurement of soil sorptivity. Soil Sci. Soc. Am. J., 63, 55–57. Search in Google Scholar

Souza, E.S., Antonino, A.C.D., Heck, R.J., Montenegro, S.M.G.L, Lima, J.R.S., Sampaio, E.V.S.B., Angulo-Jaramillo, R. Vauclin, M., 2014. Effect of crusting on the physical and hydraulic properties of a soil cropped with Castor bean (Ricinus Communis L.) in the northeastern region of Brasil. Soil Till. Res., 141, 55–61. DOI: 10.1016/j.still.2014.04. 004 Search in Google Scholar

Touma, J., Voltz, M., Albergel, J., 2007. Determining soil saturated hydraulic conductivity and sorptivity from single ring infiltration tests. Eur. J. Soil Sci., 58, 1, 229–238. DOI: 10.1111/j.1365-2389.2006.00830.x Search in Google Scholar

Verbist, K.M.J., Cornelis, W.M., Torfs, S., Gabriels, D., 2013. Comparing methods to determine hydraulic conductivities on stony soils. Soil Sci. Soc. Am. J., 77, 25–42. DOI: 10.2136/sssaj2012.0025 Search in Google Scholar

White, I., Sully, M.J., 1987. Macroscopic and microscopic capillary length and time scales from field infiltration. Water Resour. Res., 23, 1514–1522. Search in Google Scholar

White, I., Sully, M.J., Melville, M.D., 1989. Use and hydrological robustness of time-to-incipient-ponding. Soil Sci. Soc. Am. J., 53, 1343–1346. Search in Google Scholar

Wu, L., Pan, L., Roberson, M.J., Shouse, P.J., 1997. Numerical evaluation of ring-infiltrometers under various soil conditions. Soil Sci., 162, 11, 771–777. Search in Google Scholar

Yilmaz, D., Lassabatere, L., Angulo-Jaramillo, R., Deneele, D., Legret, M., 2010. Hydrodynamic characterization of basic oxygen furnace slag through an adapted BEST method. Vadose Zone J., 9, 107. DOI: 10.2136/vzj2009.0039 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo