1. bookVolume 69 (2021): Issue 4 (December 2021)
Journal Details
License
Format
Journal
First Published
28 Mar 2009
Publication timeframe
4 times per year
Languages
English
access type Open Access

Water’s path from moss to soil: A multi-methodological study on water absorption and evaporation of soil-moss combinations

Published Online: 15 Nov 2021
Page range: 421 - 435
Received: 31 Mar 2021
Accepted: 09 Jun 2021
Journal Details
License
Format
Journal
First Published
28 Mar 2009
Publication timeframe
4 times per year
Languages
English
Abstract

Mosses are often overlooked; however, they are important for soil-atmosphere interfaces with regard to water exchange. This study investigated the influence of moss structural traits on maximum water storage capacities (WSCmax) and evaporation rates, and species-specific effects on water absorption and evaporation patterns in moss layers, moss-soil-interfaces and soil substrates using biocrust wetness probes. Five moss species typical for Central European temperate forests were selected: field-collected Brachythecium rutabulum, Eurhynchium striatum, Oxyrrhynchium hians and Plagiomnium undulatum; and laboratory-cultivated Amblystegium serpens and Oxyrrhynchium hians.

WSCmax ranged from 14.10 g g−1 for Amblystegium serpens (Lab) to 7.31 g g−1 for Plagiomnium undulatum when immersed in water, and 11.04 g g−1 for Oxyrrhynchium hians (Lab) to 7.90 g g−1 for Oxyrrhynchium hians when sprayed, due to different morphologies depending on the growing location. Structural traits such as high leaf frequencies and small leaf areas increased WSCmax. In terms of evaporation, leaf frequency displayed a positive correlation with evaporation, while leaf area index showed a negative correlation. Moisture alterations during watering and desiccation were largely controlled by species/substrate-specific patterns. Generally, moss cover prevented desiccation of soil surfaces and was not a barrier to infiltration. To understand water’s path from moss to soil, this study made a first contribution.

Keywords

Acharya, B.S., Stebler, E., Zou, C.B., 2017. Monitoring litter interception of rainfall using leaf wetness sensor under controlled and field conditions. Hydrological Processes, 31, 240–249. Search in Google Scholar

Agam, N., Berliner, P.R., 2006. Dew formation and water vapor adsorption in semi-arid environments – A review. Journal of Arid Environments, 65, 572–590. Search in Google Scholar

Bates, J.W., 1998. Is ‘life-form’ a useful concept in bryophyte ecology? Oikos, 82, 223–237. Search in Google Scholar

Belnap, J., Weber, B., Büdel, B., 2016. Biological soil crusts as an organizing principle in drylands. In: Weber, B., Büdel, B., Belnap, J. (Eds.): Biological Soil Crusts: An Organizing Principle in Drylands. Springer International Publishing, Cham, pp. 3–13. Search in Google Scholar

Bengtsson, F., Granath, G., Cronberg, N., Rydin, H., 2020. Mechanisms behind species-specific water economy responses to water level drawdown in peat mosses. Annals of Botany, 126, 219–230. Search in Google Scholar

Blume, H.-P., Stahr, K., Leinweber, P., 2011. Bodenkundliches Praktikum: eine Einführung in pedologisches Arbeiten für Ökologen, insbesondere Land- und Forstwirte, und für Geowissenschaftler. 3. neubearbeitete Auflage edn. Spektrum Akademischer Verlag, Heidelberg. Search in Google Scholar

Bond-Lamberty, B., Gower, S.T., Amiro, B., Ewers, B.E., 2011. Measurement and modelling of bryophyte evaporation in a boreal forest chronosequence. Ecohydrology, 4, 26–35. Search in Google Scholar

Buch, H.R.V., 1945. Über die Wasser- und Mineralstoffversorgung der Moose. Academic Bookstore, Helsinki. Search in Google Scholar

Carleton, T., Dunham, K., 2003. Distillation in a boreal mossy forest floor. Canadian Journal of Forest Research, 33, 663–671. Search in Google Scholar

Cornelissen, J.H., Lang, S.I., Soudzilovskaia, N.A., During, H.J., 2007. Comparative cryptogam ecology: a review of bryophyte and lichen traits that drive biogeochemistry. Annals of Botany, 99, 987–1001. Search in Google Scholar

Dilks, T.J.K., Proctor, M.C.F., 1979. Photosynthesis, respiration and water content in bryophytes. New Phytologist, 82, 97–114. Search in Google Scholar

Dodd, M.B., Lauenroth, W.K., 1997. The influence of soil texture on the soil water dynamics and vegetation structure of a shortgrass steppe ecosystem. Plant Ecology, 133, 13–28. Search in Google Scholar

Einsele, G., Agster, G., 1986. Überblick zur Geologie und Morphologie des Schönbuchs. In: Einsele, G. (Ed.): Das landschaftsökologische Forschungsprojekt Naturpark Schönbuch: Wasser- und Stoffhaushalt, Bio-, Geo- und Forstwirtschaftliche Studien in Südwestdeutschland. VCH Verlagsfesellschaft, Weinheim. Search in Google Scholar

Elbert, W., Weber, B., Burrows, S., Steinkamp, J., Büdel, B., Andreae, M.O., Pöschl, U., 2012. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nature Geoscience, 5, 459–462. Search in Google Scholar

Elumeeva, T.G., Soudzilovskaia, N.A., During, H.J., Cornelissen, J.H., 2011. The importance of colony structure versus shoot morphology for the water balance of 22 subarctic bryophyte species. Journal of Vegetation Science, 22, 152–164. Search in Google Scholar

Franzluebbers, A.J., 2002. Water infiltration and soil structure related to organic matter and its stratification with depth. Soil and Tillage Research, 66, 197–205. Search in Google Scholar

Frey, W., Stech, M., Fischer, E., 2009. Syllabus of Plant Families - Part 3: Bryophytes and Seedless Vascular Plants. Borntraeger, Berlin, Stuttgart. Search in Google Scholar

Gerrits, A.M.J., Savenije, H.H.G., 2011. Forest floor interception. In: Levia, D.F., Carlyle-Moses, D., Tanaka, T. (Eds.): Forest Hydrology and Biogeochemistry: Synthesis of Past Research and Future Directions. Springer Netherlands, Dordrecht, pp. 445–454. Search in Google Scholar

Giordano, S., Colacino, C., Spagnuolo, V., Basile, A., Esposito, A., Castaldo-Cobianchi, R., 1993. Morphological adaptation to water uptake and transport in the poikilohydric moss Tortula ruralis. Giornale Botanico Italiano, 127, 1123–1132. Search in Google Scholar

Glime, J.M., 2017. Volume 1: Physiological Ecology. Bryophyte Ecology. Search in Google Scholar

Goetz, J.D., Price, J.S., 2015. Role of morphological structure and layering of Sphagnum and Tomenthypnum mosses on moss productivity and evaporation rates. Canadian Journal of Soil Science, 95, 109–124. Search in Google Scholar

Gong, Y., Cao, Q., Sun, Z., 2003. The effects of soil bulk density, clay content and temperature on soil water content measurement using time-domain reflectometry. Hydrological Processes, 17, 3601–3614. Search in Google Scholar

Green, T.G.A., Lange, O.L., 1994. Photosynthesis in poikilohydric plants: a comparison of lichens and bryophytes. In: Schulze, E.-D., Caldwell, M.M. (Eds.): Ecophysiology of Photosynthesis. Springer, New York, pp. 319–341. Search in Google Scholar

Gundule, M.J., Deluca, T.H., Nordin, A., 2011. Bryophytes attenuate anthropogenic nitrogen inputs in boreal forests. Global Change Biology, 17, 2743–2753. Search in Google Scholar

Gypser, S., Veste, M., Herppich, W., Kast, G., 2017. Linking of biological soil crust wetness and ecological performance on disturbed soils in Lower Lusatia, Germany. BES, GFÖ, NECOV, and EEF Joint Annual Meeting: Ecology across Borders. Ghent. Search in Google Scholar

He, X., He, K.S., Hyvönen, J., 2016. Will bryophytes survive in a warming world? Perspectives in Plant Ecology, Evolution and Systematics, 19, 49–60. Search in Google Scholar

Hedenäs, L., 2007. Global diversity patterns among pleurocarpous mosses. The Bryologist, 110, 319–331. Search in Google Scholar

Hillel, D., 1998. Environmental Soil Physics: Fundamentals, Applications, and Environmental Considerations. Elsevier. Search in Google Scholar

Leo, M., Lareo, A., Garcia-Saura, C., Hortal, J., Medina, N.G., 2019. BtM, a low-cost open-source datalogger to estimate the water content of nonvascular cryptogams. Journal of Visualized Experiments, 145, e58700. Search in Google Scholar

Li, B., Gao, J., Wang, X., Ma, L., Cui, Q., Veste, M., 2016. Effects of biological soil crusts on water infiltration and evaporation Yanchi Ningxia, Maowusu Desert, China. International Journal of Sediment Research, 31, 311–323. Search in Google Scholar

Lindo, Z., Gonzalez, A., 2010. The bryosphere: An integral and influential component of the Earth’s biosphere. Ecosystems, 13, 612–627. Search in Google Scholar

Liu, D., She, D., 2020. Combined effects of moss crusts and pine needles on evaporation of carbonate-derived laterite from karst mountainous lands. Journal of Hydrology, 586, 124859. Search in Google Scholar

Löbs, N., Walter, D., Barbosa, C.G.G., Brill, S., Alves, R.P., Cerqueira, G.R., de Oliveira Sá, M., de Araújo, A.C., de Oliveira, L.R., Ditas, F., Moran-Zuloaga, D., Pires Florentino, A.P., Wolff, S., Godoi, R.H.M., Kesselmeier, J., Mota de Oliveira, S., Andreae, M.O., Pöhlker, C., Weber, B. 2020. Microclimatic conditions and water content fluctuations experienced by epiphytic bryophytes in an Amazonian rain forest. Biogeosciences, 17, 5399–5416. Search in Google Scholar

Mägdefrau, K., 1982. Life-forms of bryophytes. In: Smith, A.J.E. (Ed.): Bryophyte Ecology. Springer, Dordrecht. Search in Google Scholar

Mägdefrau, K., Wutz, A., 1951. Die Wasserkapazität der Moosund Flechtendecke des Waldes. Veröffentlichung des Botanischen Instituts der Forstl. Forschungsanstalt München. Search in Google Scholar

Medina, N., Draper, I., Lara, F., 2011. Biogeography of mosses and allies: Does size matter? Biogeography of microscopic organisms. Is everything small everywhere? Cambridge University Press, pp. 209–233. Search in Google Scholar

Morgan, R.P.C., 2005. Soil Erosion and Conservation. 3 edn. Blachwell Publishing, Oxford. Search in Google Scholar

Nakatsubo, T., 1994. The effect of growth form on the evaporation in some subalpine mosses. Ecological Research, 9, 245–250. Search in Google Scholar

Nebel, M., 2001. Amblystegium serpens (Hedw.) Schimp. In: Nebel, M., Philippi, G. (Eds.): Die Moose Baden-Württembergs, Band 2: Bryophytina II, Schistostegales bis Hypnobryales. Verlag Eugen Ulmer, Stuttgart, pp. 308–309. Search in Google Scholar

Nebel, M., Philippi, G., Ahrens, M., Sauer, M., Schäfer-Verwimp, A., Schoepe, G., 2001. Die Moose Baden-Württembergs, Band 2: Bryophytina II, Schistostegales bis Hypnobryales. Verlag Eugen Ulmer, Stuttgart. Search in Google Scholar

Niinemets, Ü., Tobias, M., 2014. Scaling light harvesting from moss “leaves” to canopies. In: Hanson, D.T., Rice, S.K. (Eds): Photosynthesis in Bryophytes and Early Land Plants. Advances in Photosynthesis and Respiration (Including Bioenergy and Related Processes). Springer, Dordrecht, pp. 151–171. Search in Google Scholar

Niinemets, Ü., Tobias, M., 2019. Canopy leaf area index at its higher end: dissection of structural controls from leaf to canopy scales in bryophytes. New Phytologist, 223, 118–133. Search in Google Scholar

Novák, V., Hlaváčiková, H., 2019. Applied Soil Hydrology. Springer, Heidelberg, Berlin. Search in Google Scholar

Oishi, Y., 2018. Evaluation of the water-storage capacity of bryophytes along an altitudinal gradient from temperate forests to the Alpine zone. Forests, 9, 14. Search in Google Scholar

Price, A.G., Dunham, K., Carleton, T., Band, L., 1997. Variability of water fluxes through the black spruce (Picea mariana) canopy and feather moss (Pleurozium schreberi) carpet in the boreal forest of Northern Manitoba. Journal of Hydrology, 196, 310–323. Search in Google Scholar

Proctor, M.C.F., 1979a. Structure and eco-physiological adaptation in bryophytes. In: Bryophyte Systematics. Academic Press, London, pp. 479–509. Search in Google Scholar

Proctor, M.C.F., 1979b. Surface wax on the leaves of some mosses. Journal of Bryology, 10, 531–538. Search in Google Scholar

Proctor, M.C.F., 1982. Physiological ecology: Water relations, light and temperature responses, carbon balance. In: Smith, A.J.E. (Ed.): Bryophyte Ecology. Springer, Dordrecht. Search in Google Scholar

Proctor, M.C.F., 1990. The physiological basis of bryophyte production. Botanical Journal of the Linnean Society, 104, 61–77. Search in Google Scholar

Proctor, M.C.F., 2000. The bryophyte paradox: tolerance of desiccation, evasion of drought. Plant Ecology, 151, 41–49. Search in Google Scholar

Proctor, M.C.F., Nagy, Z., Csintalan, Z., Takács, Z., 1998. Water-content components in bryophytes: Analysis of pressure-volume relationships. Journal of Experimental Botany, 49, 1845–1854. Search in Google Scholar

Proctor, M.C.F., Oliver, M., Wood, A., Alpert, P., Stark, L., Cleavitt, N., Mishler, B., 2007. Desiccation-tolerance in bryophytes: A review. The Bryologist, 110, 595–621. Search in Google Scholar

Proctor, M.C.F., Tuba, Z., 2002. Poikilohydry and homoihydry: antithesis or spectrum of possibilities? New Phytologist, 156, 327–349. Search in Google Scholar

R Core Team, 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Search in Google Scholar

Rawls, W.J., Pachepsky, Y.A., Ritchie, J.C., Sobecki, T.M., Bloodworth, H., 2003. Effect of soil organic carbon on soil water retention. Geoderma, 116, 61–76. Search in Google Scholar

Rice, S.K., Collins, D., Anderson, A.M., 2001. Functional significance of variation in bryophyte canopy structure. American Journal of Botany, 88, 1568–1576. Search in Google Scholar

Rice, S.K., Gagliardi, T.A., Krasa, R.A., 2018. Canopy structure affects temperature distributions and free convection in moss shoot systems. American Journal of Botany, 105, 1499–1511. Search in Google Scholar

Rice, S.K., Schneider, N., 2004. Cushion size, surface roughness, and the control of water balance and carbon flux in the cushion moss Leucobryum glaucum (Leucobryaceae). American Journal of Botany, 91, 1164–1172. Search in Google Scholar

Richardson, D.H.S., 1981. The Biology of Mosses. Blackwell Scientific Publications, Oxford. Search in Google Scholar

Robinson, S.A., Wasley, J., Popp, M., Lovelock, C.E., 2000. Desiccation tolerance of three moss species from continental Antarctica. Australian Journal of Plant Physiology, 27, 379–388. Search in Google Scholar

Sayer, E.J., 2006. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biological Reviews Cambridge Philosophical Society, 81, 1–31. Search in Google Scholar

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P., Cardona, A., 2012. Fiji: an open-source platform for biological-image analysis. Nature Methods, 9, 676–682. Search in Google Scholar

Schneider, C.A., Rasband, W.S., Eliceiri, K.W., 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671–675. Search in Google Scholar

Schofield, W.B., 1981. Ecological significance of morphological characters in the moss gametophyte. The Bryologist, 84, 149–165. Search in Google Scholar

Seitz, S., Nebel, M., Goebes, P., Käppeler, K., Schmidt, K., Shi, X., Song, Z., Webber, C.L., Weber, B., Scholten, T., 2017. Bryophyte-dominated biological soil crusts mitigate soil erosion in an early successional Chinese subtropical forest. Biogeosciences, 14, 5775–5788. Search in Google Scholar

Senf, C., Buras, A., Zang, C.S., Rammig, A., Seidl, R., 2020. Excess forest mortality is consistently linked to drought across Europe. Nature Communications, 11, 6200. Search in Google Scholar

Simon, T., 1987. The leaf-area index of three moss species (Tortula ruralis, Ceratodon purpureus, and Hypnum cupressiforme). In: Pócs, T., Simon, T., Tuba, Z., Podani, J. (Eds.): IAB Conference of Bryoecology. Akadémiai Kiadó, Budapest-Vácrátót, Hungary, pp. 699–706. Search in Google Scholar

Slatyer, R.O., 1967. Plant-Water Relationships. Academic Press, London, New York. Search in Google Scholar

Söderström, L., Hagborg, A., von Konrat, M., Bartholomew-Began, S., Bell, D., Briscoe, L., Brown, E., Cargill, D.C., Costa, D.P., Crandall-Stotler, B.J., Cooper, E.D., Dauphin, G., Engel, J.J., Feldberg, K., Glenny, D., Gradstein, S.R., He, X., Heinrichs, J., Hentschel, J., Ilkiu-Borges, A.L., Katagiri, T., Konstantinova, N.A., Larraín, J., Long, D.G., Nebel, M., Pócs, T., Puche, F., Reiner-Drehwald, E., Renner, M.A.M., Sass-Gyarmati, A., Schäfer-Verwimp, A., Moragues, J.G.S., Stotler, R.E., Sukkharak, P., Thiers, B.M., Uribe, J., Váňa, J., Villarreal, J.C., Wigginton, M., Zhang, L., Zhu, R.-L., 2016. World checklist of hornworts and liverworts. PhytoKeys, 59, 1–828. Search in Google Scholar

Soudzilovskaia, N.A., van Bodegom, P.M., Cornelissen, J.H.C., 2013. Dominant bryophyte control over high-latitude soil temperature fluctuations predicted by heat transfer traits, field moisture regime and laws of thermal insulation. Functional Ecology, 27, 1442–1454. Search in Google Scholar

Tucker, C.L., McHugh, T.A., Howell, A., Gill, R., Weber, B., Belnap, J., Grote, E., Reed, S.C., 2017. The concurrent use of novel soil surface microclimate measurements to evaluate CO2 pulses in biocrusted interspaces in a cool desert ecosystem. Biogeochemistry, 135, 239–249. Search in Google Scholar

Voortman, B.R., Bartholomeus, R.P., van Bodegom, P.M., Gooren, H., van der Zee, S.E.A.T.M., Witte, J.-P.M., 2014. Unsaturated hydraulic properties of xerophilous mosses: towards implementation of moss covered soils in hydrological models. Hydrological Processes, 28, 6251–6264. Search in Google Scholar

Wang, Z., Bader, M.Y., 2018. Associations between shoot-level water relations and photosynthetic responses to water and light in 12 moss species. AoB PLANTS, 10. Search in Google Scholar

Weber, B., Berkemeier, T., Ruckteschler, N., Caesar, J., Heintz, H., Ritter, H., Braß, H., Freckleton, R., 2016. Development and calibration of a novel sensor to quantify the water content of surface soils and biological soil crusts. Methods in Ecology and Evolution, 7, 14–22. Search in Google Scholar

Zotz, G., Büde, B., Meyer, A., Zellner, H., Lange, O.L., 1997. Water relations and CO2 exchange of tropical bryophytes in a Lower Montane Rain Forest in Panama. Botanica Acta, 110, 9–17. Search in Google Scholar

Zotz, G., Schweikert, A., Jetz, W., Westerman, H., 2000. Water relations and carbon gain are closely related to cushion size in the moss Grimmia pulvinata. New Phytologist, 148, 59–67. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo