1. bookVolume 69 (2021): Issue 4 (December 2021)
Journal Details
First Published
28 Mar 2009
Publication timeframe
4 times per year
access type Open Access

Water repellency decreases with increasing carbonate content and pH for different biocrust types on sand dunes

Published Online: 15 Nov 2021
Volume & Issue: Volume 69 (2021) - Issue 4 (December 2021)
Page range: 369 - 377
Received: 30 Mar 2021
Accepted: 13 Jul 2021
Journal Details
First Published
28 Mar 2009
Publication timeframe
4 times per year

Biocrusts are biological communities that occupy the soil surface, accumulate organic matter and mineral particles and hence strongly affect the properties of the soils they cover. Moreover, by affecting water repellency, biocrusts may cause a preferential infiltration of rainwater, with a high impact on the formation of local water pathways, especially for sand dunes. The aim of this study is to shed light on the connections between water repellency and pH, carbonate and organic matter content in two dune ecosystems with different biocrust types. For this, we used contact angle measurements, gas volumetric carbonate determination and organic matter characterization via FT-IR and TOF-SIMS. In both ecosystems, moss-dominated biocrusts showed higher water repellency and higher amounts of organic matter compared to algal or cyanobacterial biocrusts. Surprisingly, the biocrusts of the two dune systems did not show differences in organic matter composition or organic coatings of the mineral grains. Biocrusts on the more acidic dunes showed a significantly higher level of water repellency as compared to higher carbonate containing dunes. We conclude that the driving factor for the increase in water repellency between cyanobacterial and moss-dominated biocrusts within one study site is the content of organic matter. However, when comparing the different study sites, we found that higher amounts of carbonate reduced biocrust water repellency.


Arenas-Lago, D., Andrade, M.L., Vega, F.A., Singh, B.R., 2016. TOF-SIMS and FE-SEM/EDS to verify the heavy metal fractionation in serpentinite quarry soils. Catena, 136, 30–43.10.1016/j.catena.2015.03.005 Search in Google Scholar

Bachmann, J., Woche, S.K., Goebel, M.O., Kirkham, M.B., Horton, R., 2003. Extended methodology for determining wetting properties of porous media. Water Resour. Res., 39, 12, 1353. Search in Google Scholar

Belnap, J., 2006. The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrol. Process., 20. 15, 3159–3178.10.1002/hyp.6325 Search in Google Scholar

Beraldi-Campesi, H., Hartnett, H. E., Anbar, A., Gordon, G. W., Garcia-Pichel, F., 2009. Effect of biological soil crusts on soil elemental concentrations: implications for biogeo-chemistry and as traceable biosignatures of ancient life on land. Geobiology, 7, 3, 348–359.10.1111/j.1472-4669.2009.00204.x19573165 Search in Google Scholar

Bisdom, E., Dekker, L.W., Schoute, J., 1993. Water repellency of sieve fractions from sandy soils and relationships with organic material and soil structure. In: Brussaard, L., Kooistra, M.J.(Eds.): Soil Structure/Soil Biota Interrelationships. International Workshop on Methods of Research on Soil Structure/Soil Biota Interrelationsships, held at the International Agricultural Centre, Wageningen, the Netherlands, 1991. Elsevier, Amsterdam, pp. 105–118. Search in Google Scholar

Cania, B., Vestergaard, G., Kublik, S., Köhne, J.M., Fischer, T., Albert, A., Winkler, B., Schloter, M., Schulz, S., 2020. Biological soil crusts from different soil substrates harbor distinct bacterial groups with the potential to produce exopolysaccharides and lipopolysaccharides. Microb. Ecol., 79, 2, 326–341.10.1007/s00248-019-01415-631372685 Search in Google Scholar

Chamizo, S., Cantón, Y., Miralles, I., Domingo, F., 2012. Biological soil crust development affects physicochemical characteristics of soil surface in semiarid ecosystems. Soil Biol. Biochem., 49, 96–105.10.1016/j.soilbio.2012.02.017 Search in Google Scholar

Cliff, J.B., Gaspar, D.J., Bottomley, P.J., Myrold, D.D., 2002. Exploration of inorganic C and N assimilation by soil microbes with time-of-flight secondary ion mass spectrometry. Appl. Environ. Microbiol., 68, 8, 4067–4073.10.1128/AEM.68.8.4067-4073.200212405812147508 Search in Google Scholar

Dekker, L.W., Doerr, S.H., Oostindie, K., Ziogas, A.K., Ritsema, C.J., 2001. Water repellency and critical soil water content in a dune sand. Soil Sci. Soc. Am. J., 65, 6, 1667–1674.10.2136/sssaj2001.1667 Search in Google Scholar

Dekker, L.W., Ritsema, C.J., 1994. How water moves in a water repellent sandy soil: 1. Potential and actual water repellency. Water Resour. Res., 30, 9, 2507–2517.10.1029/94WR00749 Search in Google Scholar

Diehl, D., Bayer, J.V., Woche, S.K., Bryant, R., Doerr, S.H., Schaumann, G.E., 2010. Reaction of soil water repellency to artificially induced changes in soil pH. Geoderma, 158, 3–4, 375–384.10.1016/j.geoderma.2010.06.005 Search in Google Scholar

Diehl, D., Ellerbrock, R.H., Schaumann, G.E., 2009. Influence of drying conditions on wettability and DRIFT spectroscopic C-H band of soil samples. Eur. J. Soil. Sci., 60, 4, 557–566.10.1111/j.1365-2389.2009.01150.x Search in Google Scholar

Doerr, S.H., Shakesby, R.A., Walsh, R., 2000. Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth-Science Rev., 51, 1–4, 33–65.10.1016/S0012-8252(00)00011-8 Search in Google Scholar

Drahorad, S., Felix-Henningsen, P., Eckhardt, K.-U., Leinweber, P., 2013a. Spatial carbon and nitrogen distribution and organic matter characteristics of biological soil crusts in the Negev desert (Israel) along a rainfall gradient. J. Arid Environ., 94, 18–26.10.1016/j.jaridenv.2013.02.006 Search in Google Scholar

Drahorad, S., Steckenmesser, D., Felix-Henningsen, P., Lichner, Ľ., Rodný, M., 2013b. Ongoing succession of biological soil crusts increases water repellency — a case study on Arenosols in Sekule, Slovakia. Biologia, 68, 6, 1089–1093.10.2478/s11756-013-0247-6 Search in Google Scholar

Drahorad, S.L., Jehn, F.U., Ellerbrock, R.H., Siemens, J., Felix-Henningsen, P., 2020. Soil organic matter content and its aliphatic character define the hydrophobicity of biocrusts in different successional stages. Ecohydrol., 13, 6, e2232.10.1002/eco.2232 Search in Google Scholar

Ellerbrock, R.H., Hoehn, A., Rogasik, J., 1999. Functional analysis of soil organic matter as affected by long-term manurial treatment. Eur. J. Soil. Sci., 50, 65–71.10.1046/j.1365-2389.1999.00206.x Search in Google Scholar

Ellerbrock, R.H., Gerke, H.H., Bachmann, J., Goebel, M.-O., 2005. Composition of organic matter fractions for explaining wettability of three forest soils. Soil Sci. Soc. Am. J., 69, 1, 57.10.2136/sssaj2005.0057 Search in Google Scholar

Felde, V.J.M.N.L., Peth, S., Uteau-Puschmann, D., Drahorad, S., Felix-Henningsen, P., 2014. Soil microstructure as an under-explored feature of biological soil crust hydrological properties: case study from the NW Negev Desert. Biodivers. Conserv., 23, 7, 1687–1708.10.1007/s10531-014-0693-7 Search in Google Scholar

Fischer, T., Veste, M., Schaaf, W., Dümig, A., Kögel-Knabner, I., Wiehe, W., Bens, O., Hüttl, R.F., 2010. Initial pedogenesis in a topsoil crust 3 years after construction of an artificial catchment in Brandenburg, NE Germany. Biogeochem., 101, 1–3, 165–176.10.1007/s10533-010-9464-z Search in Google Scholar

Fischer, T., Yair, A., Veste, M., Geppert, H., 2013. Hydraulic properties of biological soil crusts on sand dunes studied by 13C-CP/MAS-NMR: A comparison between an arid and a temperate site. Catena, 110, 155–160.10.1016/j.catena.2013.06.002 Search in Google Scholar

González-Peñaloza, F.A., Zavala, L.M., Jordán, A., Bellinfante, N., Bárcenas-Moreno, G., Mataix-Solera, J., Granged, A.J., Granja-Martins, F.M., Neto-Paixão, H.M., 2013. Water repellency as conditioned by particle size and drying in hydro-phobized sand. Geoderma, 209–210, 31–40.10.1016/j.geoderma.2013.05.022 Search in Google Scholar

Graber, E.R., Ben-Arie, O., Wallach, R., 2006. Effect of sample disturbance on soil water repellency determination in sandy soils. Geoderma, 136, 1–2, 11–19.10.1016/j.geoderma.2006.01.007 Search in Google Scholar

Graber, E.R., Tagger, S., Wallach, R., 2009. Role of divalent fatty acid salts in soil water repellency. Soil Sci. Soc. Am. J., 73, 2, 541–549.10.2136/sssaj2008.0131 Search in Google Scholar

Gypser, S., Veste, M., Fischer, T., Lange, P., 2016. Infiltration and water retention of biological soil crusts on reclaimed soils of former open-cast lignite mining sites in Brandenburg, north-east Germany. J. Hydrol. Hydromech., 64, 1, 1–11.10.1515/johh-2016-0009 Search in Google Scholar

Hagemann, M., Henneberg, M., Felde, V.J.M.N.L., Drahorad, S.L., Berkowicz, S.M., Felix-Henningsen, P., Kaplan, A., 2015. Cyanobacterial diversity in biological soil crusts along a precipitation gradient, Northwest Negev Desert, Israel. Microb. Ecol., 70, 1, 219–230.10.1007/s00248-014-0533-z Search in Google Scholar

Harper, R.J., McKissock, I., Gilkes, R.J., Carter, D.J., Blackwell, P.S., 2000. A multivariate framework for interpreting the effects of soil properties, soil management and landuse on water repellency. J. Hydrol., 231, 371–383.10.1016/S0022-1694(00)00209-2 Search in Google Scholar

Henss, A., Otto, S.-K., Schaepe, K., Pauksch, L., Lips, K.S., Rohnke, M., 2018. High resolution imaging and 3D analysis of Ag nanoparticles in cells with ToF-SIMS and delayed extraction. Biointerphases, 13, 3, 03B410.10.1116/1.501595729490464 Search in Google Scholar

Iovino, M., Pekárová, P., Hallett, P. D., Pekár, J., Lichner, Ľ., Mataix-Solera, J., Alagna, V., Walsh, R., Raffan, A., Schacht, K., Rodný, M., 2018. Extent and persistence of soil water repellency induced by pines in different geographic regions. J. Hydrol. Hydromech., 66, 4, 360–368.10.2478/johh-2018-0024 Search in Google Scholar

Jacobs, A.F., Heusinkveld, B.G., Berkowicz, S.M., 2000. Dew measurements along a longitudinal sand dune transect, Negev Desert, Israel. Int. J. Biometeorol., 43, 4, 184–190.10.1007/s00484005000710789921 Search in Google Scholar

Jia, R., Gao, Y., Liu, L., Yang, H., Zhao, Y., 2020. Effect of sand burial on the subcritical water repellency of a dominant moss crust in a revegetated area of the Tengger Desert, Northern China. J. Hydrol. Hydromech., 68, 3, 279–284.10.2478/johh-2020-0025 Search in Google Scholar

Keck, H., Felde, V.J.M.N.L., Drahorad, S.L., Felix-Henningsen, P., 2016. Biological soil crusts cause subcritical water repellency in a sand dune ecosystem located along a rainfall gradient in the NW Negev desert, Israel. J. Hydrol. Hydromech., 64, 2, 133–140.10.1515/johh-2016-0001 Search in Google Scholar

Kidron, G.J., Büdel, B., 2014. Contrasting hydrological response of coastal and desert biocrusts. Hydrol. Process., 28, 2, 361–371.10.1002/hyp.9587 Search in Google Scholar

Kidron, G.J., Vonshak, A., Abeliovich, A., 2009. Microbiotic crusts as biomarkers for surface stability and wetness duration in the Negev Desert. Earth Surf. Process. Landforms, 34, 12, 1594–1604.10.1002/esp.1843 Search in Google Scholar

Kidron, G.J., Xiao, B., Benenson, I., 2020. Data variability or paradigm shift? Slow versus fast recovery of biological soil crusts-a review. Sci. Total Environ., 721, 137683.10.1016/j.scitotenv.2020.137683 Search in Google Scholar

Kögel-Knabner, I., 2002. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol. Biochem., 34, 2, 139–162.10.1016/S0038-0717(01)00158-4 Search in Google Scholar

Leelamanie, D.A.L., Karube, J., 2009. Effects of hydrophobic and hydrophilic organic matter on the water repellency of model sandy soils. Soil Sci. Plant Nutri., 55, 4, 462–467.10.1111/j.1747-0765.2009.00388.x Search in Google Scholar

Letey, J., Carrillo, M.L.K., Pang, X.P., 2000. Approaches to characterize the degree of water repellency. Journal of Hydrology, 231, 61–65.10.1016/S0022-1694(00)00183-9 Search in Google Scholar

Lichner, L., Felde, V.J., Büdel, B., Leue, M., Gerke, H.H., Ellerbrock, R.H., Kollár, J., Rodný, M., Šurda, P., Fodor, N., Sándor, R., 2018. Effect of vegetation and its succession on water repellency in sandy soils. Ecohydrol., 11, 6, e1991.10.1002/eco.1991 Search in Google Scholar

Lichner, L., Hallett, P.D., Drongová, Z., Czachor, H., Kovacik, L., Mataix-Solera, J., Homolák, M., 2013. Algae influence the hydrophysical parameters of a sandy soil. Catena, 108, 58–68.10.1016/j.catena.2012.02.016 Search in Google Scholar

Lichner, Ľ., Holko, L., Zhukova, N., Schacht, K., Rajkai, K., Fodor, N., Sándor, R., 2012. Plants and biological soil crust influence the hydrophysical parameters and water flow in an aeolian sandy soil. J. Hydrol. Hydromech., 60, 4, 309–318.10.2478/v10098-012-0027-y Search in Google Scholar

Littmann, T., Schultz, A., 2008. Atmospheric input of nutrient elements and dust into the sand dune field of the northwestern Negev. In: Breckle, S.-W., Yair, A., Veste, M. (Eds.): Arid Dune Ecosystems. Springer, Berlin, Heidelberg, pp. 271–284.10.1007/978-3-540-75498-5_19 Search in Google Scholar

Mataix-Solera, J., Arcenegui, V., Guerrero, C., Mayoral, A.M., Morales, J., González, J., García-Orenes, F., Gómez, I., 2007. Water repellency under different plant species in a calcareous forest soil in a semiarid Mediterranean environment. Hydrol. Process., 21, 17, 2300–2309.10.1002/hyp.6750 Search in Google Scholar

McKissock, I., Walker, E., Gilkes, R., Carter, D., 2000. The influence of clay type on reduction of water repellency by applied clays: a review of some West Australian work. J. Hydrol., 231–232, 323–332.10.1016/S0022-1694(00)00204-3 Search in Google Scholar

Miralles, I., Ladrón de Guevara, M., Chamizo, S., Rodríguez-Caballero, E., Ortega, R., van Wesemael, B., Cantón, Y., 2018. Soil CO2 exchange controlled by the interaction of biocrust successional stage and environmental variables in two semiarid ecosystems. Soil Biol. Biochem., 124, 11–23.10.1016/j.soilbio.2018.05.020 Search in Google Scholar

Morley, C.P., Mainwaring, K.A., Doerr, S.H., Douglas, P., Llewellyn, C.T., Dekker, L.W., 2005. Organic compounds at different depths in a sandy soil and their role in water repellency. Soil Res., 43, 3, 239.10.1071/SR04094 Search in Google Scholar

Nierop, K.G., van Lagen, B., Buurman, P., 2001. Composition of plant tissues and soil organic matter in the first stages of a vegetation succession. Geoderma, 100, 1–2, 1–24.10.1016/S0016-7061(00)00078-1 Search in Google Scholar

Roper, M.M., 2005. Managing soils to enhance the potential for bioremediation of water repellency. Soil Res., 43, 7, 803.10.1071/SR05061 Search in Google Scholar

Rozenstein, O., Zaady, E., Katra, I., Karnieli, A., Adamowski, J., Yizhaq, H., 2014. The effect of sand grain size on the development of cyanobacterial biocrusts. Aeol. Research, 15, 217–226.10.1016/j.aeolia.2014.08.003 Search in Google Scholar

Smidt, E, Lechner, P., Schwanninger, M., Haberhauer, G., Gerzabek, M. H., 2002. Characterization of Waste Organic Matter by FT-IR Spectroscopy: Application in Waste Science. Appl. Spectrosc., AS 56, 9, 1170–1175.10.1366/000370202760295412 Search in Google Scholar

Tatzber, M., Stemmer, M., Spiegel, H., Katzlberger, C., Haberhauer, G., Gerzabek, M.H., 2007. An alternative method to measure carbonate in soils by FT-IR spectroscopy. Environ. Chem. Lett., 5, 1, 9–12.10.1007/s10311-006-0079-5 Search in Google Scholar

Tighe, M., Haling, R.E., Flavel, R.J., Young, I.M., 2012. Ecological succession, hydrology and carbon acquisition of biological soil crusts measured at the micro-scale. PloS One, 7, 10, e48565.10.1371/journal.pone.0048565348411823119058 Search in Google Scholar

Vickerman, J.S., Gilmore, I.S., (Eds.), 2009. Surface Analysis-Principal Techniques. 2nd Ed. John Wiley and Sons.10.1002/9780470721582 Search in Google Scholar

Vogelmann, E.S., Reichert, J.M., Prevedello, J., Consensa, C., Oliveira, A., Awe, G.O., Mataix-Solera, J., 2013. Threshold water content beyond which hydrophobic soils become hydrophilic: The role of soil texture and organic matter content. Geoderma, 209–210, 177–187.10.1016/j.geoderma.2013.06.019 Search in Google Scholar

Wang, X.Y., Zhao, Y., Horn, R., 2010. Soil wettability as affected by soil characteristics and land use. Pedosphere, 20, 1, 43–54.10.1016/S1002-0160(09)60281-2 Search in Google Scholar

Woche, S.K., Goebel, M.-O., Kirkham, M.B., Horton, R., van der Ploeg, R.R., Bachmann, J., 2005. Contact angle of soils as affected by depth, texture, and land management. Euro. J. Soil Sci., 56, 2, 239–251.10.1111/j.1365-2389.2004.00664.x Search in Google Scholar

Zavala, L.M., González, F.A., Jordán, A., 2009. Intensity and persistence of water repellency in relation to vegetation types and soil parameters in Mediterranean SW Spain. Geoderma, 152, 3–4, 361–374.10.1016/j.geoderma.2009.07.011 Search in Google Scholar

Zheng, W., Morris, E.K., Lehmann, A., Rillig, M.C., 2016. Interplay of soil water repellency, soil aggregation and organic carbon. A meta-analysis. Geoderma, 283, 39–47.10.1016/j.geoderma.2016.07.025 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo