1. bookVolume 69 (2021): Issue 4 (December 2021)
Journal Details
License
Format
Journal
eISSN
1338-4333
First Published
28 Mar 2009
Publication timeframe
4 times per year
Languages
English
access type Open Access

Effect of mature spruce forest on canopy interception in subalpine conditions during three growing seasons

Published Online: 15 Nov 2021
Volume & Issue: Volume 69 (2021) - Issue 4 (December 2021)
Page range: 436 - 446
Received: 14 Jul 2021
Accepted: 23 Aug 2021
Journal Details
License
Format
Journal
eISSN
1338-4333
First Published
28 Mar 2009
Publication timeframe
4 times per year
Languages
English
Abstract

The interception process in subalpine Norway spruce stands plays an important role in the distribution of throughfall. The natural mountain spruce forest where our measurements of throughfall and gross precipitation were carried out, is located on the tree line at an elevation of 1,420 m a.s.l. in the Western Tatra Mountains (Slovakia, Central Europe). This paper presents an evaluation of the interception process in a natural mature spruce stand during the growing season from May to October in 2018–2020. We also analyzed the daily precipitation events within each growing season and assigned to them individual synoptic types. The amount and distribution of precipitation during the growing season plays an important role in the precipitation-interception process, which confirming the evaluation of individual synoptic situations. During the monitored growing seasons, precipitation was normal (2018), sub-normal (2019) and above-normal (2020) in comparison with long-term precipitation (1988–2017). We recorded the highest precipitation in the normal and above-normal precipitation years during the north-eastern cyclonic synoptic situation (NEc). During these two periods, interception showed the lowest values in the dripping zone at the crown periphery, while in the precipitation sub-normal period (2019), the lowest interception was reached by the canopy gap. In the central crown zone near the stem, interception reached the highest value in each growing season. In the evaluated vegetation periods, interception reached values in the range of 19.6–24.1% of gross precipitation total in the canopy gap, 8.3–22.2% in the dripping zone at the crown periphery and 45.7–51.6% in the central crown zone near the stem. These regimes are expected to change in the Western Tatra Mts., as they have been affected by windstorms and insect outbreaks in recent decades. Under disturbance regimes, changes in interception as well as vegetation, at least for some period of time, are unavoidable.

Keywords

Arnell, N., 2002. Hydrology and Global Environmental Change. Routledge, London, 364 p. Search in Google Scholar

Ballon, L., Forgáč, P., Molnár, F., 1964. Weather over the territory of Slovakia in typical weather situations. Hydrometeorologický ústav, Praha, 30 p. (In Slovak.) Search in Google Scholar

Bartík, M., Sitko, R., Oreňák, M., Slovík, J., Škvarenina, J., 2014. Snow accumulation and ablation in disturbed mountain spruce forest in West Tatra Mts. Biologia, 69, 1492–1501.10.2478/s11756-014-0461-x Search in Google Scholar

Bartík, M., Jančo, M., Střelcová, K., Škvareninová, J., Škvarenina, J., Mikloš, M., Vido, J., Waldhauserová, P.D., 2016. Rainfall interception in a disturbed montane spruce (Picea abies) stand in the West Tatra Mountains. Biologia, 2016, 71, 1002–1008.10.1515/biolog-2016-0119 Search in Google Scholar

Bartík, M., Holko, L., Jančo, M., Škvarenina, J., Danko, M., Kostka, Z., 2019. Influence of mountain spruce forest die-back on snow accumulation and melt. Journal of Hydrology and Hydromechanics, 67, 59–69.10.2478/johh-2018-0022 Search in Google Scholar

Beranová, R., Huth, R., 2005. Long-term changes in the heat island of Prague under different synoptic conditions. Theoretical and Applied Climatology, 82, 113–118.10.1007/s00704-004-0115-y Search in Google Scholar

Bernsteinová, J., Bässler, C., Zimmermann, L., Langhammer, J., Beudert, B., 2015. Changes in runoff in two neighbouring catchments in the Bohemian Forest related to climate and land cover changes. Journal of Hydrology and Hydromechanics, 63, 342–352.10.1515/johh-2015-0037 Search in Google Scholar

Bladon, K.D., Bywater-Reyes, S., LeBoldus, J. M., Keriö, S., Segura, C., Ritóková, G., Shaw, D.C., 2019. Increased streamflow in catchments affected by a forest disease epidemic. Science of the Total Environment, 691, 112–123.10.1016/j.scitotenv.2019.07.12731319249 Search in Google Scholar

Brádka, J., Dřevikovský, A., Gregor., Z., Kolesár, J., 1961. Weather over the territory of Bohemia and Moravia in typical weather situations. Hydrometeorologický ústav, Praha, 31 p. (In Czech.) Search in Google Scholar

Bruijnzeel, L.A., 2004. Hydrological cycle. In: Burley, J., Evans, J., Youngquist, J. (Eds.): Encyclopedia of Forest Sciences. Elsevier Academic Press, Oxford, pp. 340–350.10.1016/B0-12-145160-7/00206-4 Search in Google Scholar

Černohous, V., Švihla, V., Šach, F., 2018. Manifestation of drought in spruce pole-stage stand in summer 2015. Zprávy Lesnického Výzkumu, 63, 10–19. (In Czech.) Search in Google Scholar

Chang, M., 2013. Forest Hydrology: An Introduction to Water and Forests (third edition). CRC Press, Boca Raton, 595 p. Search in Google Scholar

Chroust, L., 1987. Ecology of forest education. Výzkumný ústav lesního hospodářství a myslivosti, Opočno. 277 p. (In Czech.) Search in Google Scholar

Danáčová, M., Danko, M., Lajda, D., 2019. The influence of the degree-day factor determination on the snow water equivalent simulation. Meteorologický časopis, 22, 11–20. (In Slovak.) Search in Google Scholar

Dohnal, M., Černý, T., Votrubová, J., Tesař, M., 2014. Rainfall interception and spatial variability of throughfall in spruce stand. Journal of Hydrology and Hydromechanics, 62, 277–284.10.2478/johh-2014-0037 Search in Google Scholar

European Centre for Medium-Range Weather Forecasts, Copernicus Climate Change Service, 2020. Copernicus: 2019 was the second warmest year and the last five years were the warmest on record (https://climate.copernicus.eu/index.php/copernicus-2019-was-second-warmest-year-and-last-five-years-were-warmest-record). Search in Google Scholar

Fazekašová, D., Boguská, Z., Fazekaš, J., Škvareninová, J., Chovancová, J., 2016. Contamination of vegetation growing on soils and substrates in the unhygienic region of Central Spiš (Slovakia) polluted by heavy metals. Journal of Environmental Biology, 37, 1335–1340. Search in Google Scholar

Fišák, J., Řezáčová, D., Weignerová, V., Tesař, M, 2004. Syn-optic Situations and Pollutant Concentrations in Fog Water Samples from the Milešovka Mt. Studia Geophysica et Geodaetica, 48, 469–481.10.1023/B:SGEG.0000020842.27516.06 Search in Google Scholar

Fišák, J., Tesař, M., 2015. Evaluation of the contribution of deposited precipitation. Advances in Meteorology, 2015, Article ID 472963.10.1155/2015/472963 Search in Google Scholar

Fleischer, P., Pichler, V., Fleischer, P. Jr., Holko, L., Máliš, F., Gömöryová, E., Cudlín, P., Michalová, Z., Homolová, Z., Škvarenina, J., Střelcová, K., Hlaváč, P., 2017. Forest ecosystem services affected by natural disturbances, cliamte and land-use changes in the Tatra Mountains. Climate Research, 73, 57–71.10.3354/cr01461 Search in Google Scholar

Fojt, V., Krečmer, V., 1975. Formation of horizontal precipitation from fog and its amount in spruce stands in the middle mountain region. Vodohospodářsky časopis, 23, 581–606. (In Czech.) Search in Google Scholar

Gömöryová, E., Fleischer, P., Pichler, V., Homolák, M., Gere, R., Gömöry, D., 2017. Soil microorganisms at the wind-throw plots: the effect of post-disturbance management and the time since disturbance. iForest-Biogeosciences and Forestry, 10, 515–521.10.3832/ifor2304-010 Search in Google Scholar

Gregersen, M.H., Ffolliott, F.P., Brooks, N.K., 2007. Integrated Watershed Management: People to their land and water. CABI, Cambridge, 288 p.10.1079/9781845932817.0000 Search in Google Scholar

Grelle, A., Lundberg, A., Lindroth, A., Morén, A.S., Cienciala, E., 1997. Evaporation components of a boreal forest: variations during the growing season. Journal of Hydrology, 197, 70–87.10.1016/S0022-1694(96)03267-2 Search in Google Scholar

Grodzki, W., Jakuš, R., Lajzová, E., Sitková, Z., Maczka, T., Škvarenina, J., 2006. Effects of intensive versus no management strategies during an outbreak of the bark beetle Ips typographus (L.) (Col.: Curculionidae, Scolytinae) in the Tatra Mts. in Poland and Slovakia. Annals of Forest Science, 63, 55–61.10.1051/forest:2005097 Search in Google Scholar

Grunicke, S., Queck, R., Bernhofer, C., 2020. Long-term investigation of forest canopy rainfall interception for a spruce stand. Agricultural and Forest Meteorology, 292, 108–125.10.1016/j.agrformet.2020.108125 Search in Google Scholar

Halmová, D., Pekárová, P., Miklánek, P., 2006. Rainfall interception in hornbeam and spruce forest in Slovakia. Meteorologický časopis, 9, 123–129. Search in Google Scholar

Hančinský L., 1972. Forest types of Slovakia. Príroda, Bratislava, 307 p. (In Slovak.) Search in Google Scholar

Harr, R. D., Levno, A., Mersereau, R., 1982. Streamflow changes after logging 130-year-old Douglas fir in two small watersheds. Water Resources Research, 18, 637–644.10.1029/WR018i003p00637 Search in Google Scholar

Hess, P., Brezowsky, H., 1977. Katalog der Großwetterlagen Europas 1881-1976. 3rd Ed. Berichte des Deutschen Wetter-dienstes, 113, 1–140. (In German.) Search in Google Scholar

Holko, L., Škvarenina, J., Kostka, Z., Frič, M., Staroň, J., 2009. Impact of spruce forest on rainfall interception and seasonal snow cover evolution in the Western Tatra Mountains, Slovakia. Biologia, 64, 594–599.10.2478/s11756-009-0087-6 Search in Google Scholar

Holko, L., Sleziak, P., Danko, M., Bičárová, S., Pociask-Karteczka, J., 2020. Analysis of changes in hydrological cycle of a pristine mountain catchment: 1. Water balance components and snow cover. Journal of Hydrology and Hydro-mechanics, 68, 180–191.10.2478/johh-2020-0010 Search in Google Scholar

Holko, L., Danko, M., Sleziak, P., 2021. Snowmelt characteristics in a pristine mountain catchment of the Jalovecký Creek, Slovakia, over the last three decades. Hydrological Processes, 35, e14128.10.1002/hyp.14128 Search in Google Scholar

Homolák, M., Gömöryová, E., Pichler, V., 2020. Can soil electrical resistivity measurements aid the identification of forest areas prone to windthrow disturbance? Forests, 11, 234.10.3390/f11020234 Search in Google Scholar

Hotový, O., Jeníček, M., 2020. The impact of changing subcanopy radiation on snowmelt in a disturbed coniferous forest. Hydrological Processes, 34, 5298–5314.10.1002/hyp.13936 Search in Google Scholar

Hroššo, B., Mezei, P., Potterf, M., Majdák, A., Blaženec, M., Korolyova, N., Jakuš, R., 2020. Drivers of spruce bark beetle (Ips typographus) infestations on downed trees after severe windthrow. Forests, 11, 1290.10.3390/f11121290 Search in Google Scholar

Iovino, M., Pekárová, P., Hallett, P.D., Pekár, J., Lichner, Ľ., Mataix-Solera, J., Alagna, V., Walsh, R., Raffan, A., Schacht, K., Rodný, M., 2018. Extent and persistence of soil water repellency induced by pines in different geographic regions. Journal of Hydrology and Hydromechanics, 66, 360–368.10.2478/johh-2018-0024 Search in Google Scholar

Jančo, M., Bartík, M., Škvarenina, J., 2017. The impact of the decline of mountain spruces on the interception process in the Western Tatras. In: Hydrology of a small basin 2017. Institute of Hydrodynamics of the Czech Academy of Sciences, Prague, pp. 84–90. (In Slovak.) Search in Google Scholar

Jeníček, M., Hotový, O., Matějka, O., 2017. Snow accumulation and ablation in different canopy structures at a plot scale: using degree-day approach and measured shortwave radiation. Acta Universitatis Carolinae Geographica, 52, 61–72.10.14712/23361980.2017.5 Search in Google Scholar

Kaiser, K.E., McGlynn, B.L., Emanuel, R.E., 2013. Ecohydrology of an outbreak: mountain pine beetle impacts trees in drier landscape positions first. Ecohydrology, 6, 444–454.10.1002/eco.1286 Search in Google Scholar

Kantor, P., 1981. Interception of mountainous spruce and beech stands. Lesnictví, 27, 171–192. (In Czech.) Search in Google Scholar

Klamerus-Iwan, A., Link, T.E., Keim, R.F., Van Stan II, J.T., 2020. Storage and routing of precipitation through canopies. In: Van Stan II, J.T., Gutmann, E., Friesen, J. (Eds.): Precipitation Partitioning by Vegetation: A Global Synthesis. Springer Nature, Cham, pp 17–34.10.1007/978-3-030-29702-2_2 Search in Google Scholar

Kofroňová, J., Šípek, V., Hnilica, J., Vlček, L., Tesař, M., 2021. Canopy interception estimates in a Norway spruce forest and their importance for hydrological modelling. Hydrological Sciences Journal, 66, 1–15.10.1080/02626667.2021.1922691 Search in Google Scholar

Konček, M., Orlicz, M., 1974. Synoptic climatology. In: Konček, M. (Ed.): Klíma Tatier. Veda, Bratislava, pp. 27–49. (In Slovak.) Search in Google Scholar

Krečmer, V., 1968. Precipitation interception of spruce forest in middle mountain region. Opera Corcontica, 5, 83–96. (In Czech.) Search in Google Scholar

Krečmer, V., 1973. Meteorological conditions for occurrence of fog precipitation, and its significance for the interception process in upland forests. Meteorologické zprávy, 27, 18–25. (In Czech.) Search in Google Scholar

Krečmer, V., Fojt, V., Hynčica, V., 1981. Interception process in spruce stands. Vodohospodářsky časopis, 29, 6, 593–614. (In Czech.) Search in Google Scholar

Landsberg, J., Waring, R., 2014. Forests in Our Changing World: New Principles for Conservation and Management. Island Press, Washington, 224 p.10.5822/978-1-61091-497-0 Search in Google Scholar

Lapin, M., Faško, P., Melo, M., Šťastný, P., Tomlain, J., 2002. Climate zones. In: Landscape Atlas of the Slovak Republic. Ministry of Environment of the Slovak Republic, Bratislava. (In Slovak.) Search in Google Scholar

Lichner, Ľ., Iovino, M., Šurda, P., Nagy, V., Zvala, A., Kollár, P., Pecho, J., Píš, V., Sepehrnia, N., Sándor, R., 2020. Impact of secondary succession in abandoned fields on some properties of acidic sandy soils. Journal of Hydrology and Hydromechanics, 68, 12–18.10.2478/johh-2019-0028 Search in Google Scholar

Llorens, P., Gallart, F., 2000. A simplified method for forest water storage capacity measurement. Journal of Hydrology, 240, 131–144.10.1016/S0022-1694(00)00339-5 Search in Google Scholar

Lovett, G.M., Reiners, W.A., Olson, R.K. 1982. Cloud droplet deposition in subalpine balsam fir forests: hydrological and chemical inputs. Science, 218, 1303–1304.10.1126/science.218.4579.130317770164 Search in Google Scholar

Mezei, P., Jakuš, R., Pennerstorfer, J., Havašová, M., Škvarenina, J., Ferenčík, J., Slivinský, J., Bičárová, S., Bilčík, D., Blaženec, M., Netherer, S., 2017. Storms, temperature maxima and the Eurasian spruce bark beetle Ips typographus – An infernal trio in Norway spruce forests of the Central European High Tatra Mountains. Agricultural and Forest Meteorology, 242, 85–95.10.1016/j.agrformet.2017.04.004 Search in Google Scholar

Minďáš, J., 2003. Characteristics of snow conditions in forest stands of the central mountain area of Poľana. Lesnícky časopis, 49, 105–115. (In Slovak.) Search in Google Scholar

Minďáš, J., Škvarenina, J., 1995. Chemical composition of fog cloud and rain snow water in Biosphere Reserve Poľana. Ekologia-Bratislava, 14, 125–137. Search in Google Scholar

Minďáš, J., Bartík, M., Škvareninová, J., Repiský, R., 2018. Functional effects of forest ecosystems on water cycle – Slovakia case study. Journal of Forest Science, 64, 331–339.10.17221/46/2018-JFS Search in Google Scholar

Oreňák, M., Vido, J., Hríbik, M., Bartík, M., Jakuš, R., Škvarenina, J., 2013. Interception process of spruce forest in the phase of disintegration in the Western Tatras, Slovakia. Zprávy Lesnického Výzkumu, 58, 360–369. (In Slovak.) Search in Google Scholar

Oulehle, F., Chuman, T., Majer, V., Hruška, J., 2013. Chemical recovery of acidified Bohemian lakes between 1984 and 2012: the role of acid deposition and bark beetle induced forest disturbance. Biogeochemistry, 116, 83–101.10.1007/s10533-013-9865-x Search in Google Scholar

Petrovič, Š., 1972. Weather and climate. In: Lukniš, M. (Ed.): Slovensko: Príroda. Obzor, Bratislava, pp. 203–282. (In Slovak.) Search in Google Scholar

Pichler, V., Godinho-Ferreira, P., Zlatanov, T., Pichlerová, M., Gregor, J., 2010. Changes in forest cover and its diversity. In: Bredemeier, M., Cohen, S., Godbold, D.L., Lode, E., Pichler, V., Schleppi, P. (Eds.): Forest Management and the Water Cycle: An Ecosystem-Based Approach (Vol. 212). Springer Science & Business Media, Dordrecht, pp. 209–224.10.1007/978-90-481-9834-4_12 Search in Google Scholar

Polčák, N., Mészáros, J., 2018. The effect of relief on the distribution of atmospheric precipitation in Slovakia in the southern cyclonic situations. Geografický časopis, 70, 259–272. (In Slovak.)10.31577/geogrcas.2018.70.3.14 Search in Google Scholar

Pypker, T.G., Levia, D.F., Staelens, J., Van Stan, J.T., 2011. Canopy Structure in Relation to Hydrological and Biogeo-chemical Fluxes. In: Levia, F.D., Carlyle-Moses, D., Tanaka, T. (Eds.): Forest Hydrology and Biogeochemistry. Springer, Dordrecht, pp. 371–388.10.1007/978-94-007-1363-5_18 Search in Google Scholar

Racko, S., 1996. A note on the change in the typing of synoptic situations. Meteorologické zprávy, 49, 89–89. (In Czech.) Search in Google Scholar

Rehfuess, K.E., 1985. On the causes of decline of Norway spruce (Picea abies Karst.) in Central Europe. Soil Use and Management, 1, 30–31.10.1111/j.1475-2743.1985.tb00650.x Search in Google Scholar

Robinson, M., Ward, R., 2017. Hydrology: Principles and Processes. IWA Publishing, London, 402 p.10.2166/9781780407296 Search in Google Scholar

Sadeghi, S.M.M., Gordon, D.A., Van Stan II, J.T., 2020. A global synthesis of throughfall and stemflow hydrometeorology. In: Van Stan II, J.T., Gutmann, E., Friesen, J. (Eds.): Precipitation Partitioning by Vegetation: A Global Synthesis. Springer Nature, Cham, pp. 49–70.10.1007/978-3-030-29702-2_4 Search in Google Scholar

Seidl, R., Schelhaas, M.J., Lexer, M.J., 2011. Unraveling the drivers of intensifying forest disturbance regimes in Europe. Global Change Biology, 17, 2842–2852.10.1111/j.1365-2486.2011.02452.x Search in Google Scholar

Seidl, R., Albrich, K., Erb, K., Formayer, H., Leidinger, D., Leitinger, G., Tappeiner, U., Tasser, E., Rammer, W., 2019. What drives the future supply of regulating ecosystem services in a mountain forest landscape? Forest Ecology and Management, 445, 37–47.10.1016/j.foreco.2019.03.047 Search in Google Scholar

Shelton, M.L., 2009. Hydroclimatology: Perspectives and Applications. Cambridge University Press, Cambridge 2009. 426 p. Search in Google Scholar

Sierota, Z., Grodzki, W., Szczepkowski, A., 2019. Abiotic and biotic disturbances affecting forest health in Poland over the past 30 years: Impacts of climate and forest management. Forests, 10, 75.10.3390/f10010075 Search in Google Scholar

Slovak Hydrometeorological Institute, 2021. Types of weather situations (2018, 2019, 2021: http://www.shmu.sk/sk/?page=8). (In Slovak.) Search in Google Scholar

Stanová, V., Valachovič, M. (Eds.) 2002. Catalog of Slovak Biotops. DAPHNE – Inštitút aplikovanej ekológie, Bratislava, 225 p. (In Slovak.) Search in Google Scholar

Střelcová, K., Minďáš, J., Škvarenina, J., 2006. Influence of tree transpiration on mass water balance of mixed mountain forests of the West Carpathians. Biologia, 61, 305–310.10.2478/s11756-006-0178-6 Search in Google Scholar

Šípek, V., Hnilica, J., Vlček, L., Hnilicová, S., Tesař, M., 2020. Influence of vegetation type and soil properties on soil water dynamics in the Šumava Mountains (Southern Bohemia). Journal of Hydrology, 582, 124285.10.1016/j.jhydrol.2019.124285 Search in Google Scholar

Šraj, M., Brilly, M., Mikoš, M., 2008. Rainfall interception by two deciduous Mediterranean forests of contrasting stature in Slovenia. Agricultural and Forest Meteorology, 148, 121–134.10.1016/j.agrformet.2007.09.007 Search in Google Scholar

Švihla, V., Šach, F., Černohous, V., 2016. Influence of clear-cuttings or impact of rapid broad disintegration of a forest on total run-off by growing seasons. Zprávy Lesnického Výzkumu, 61, 138–144. (In Czech.) Search in Google Scholar

Tužinský, L., 2004. Water regime of forest soils. Technická univerzita vo Zvolene, Zvolen, 102 p. (In Slovak.) Search in Google Scholar

Vacek, S., Hůnová, I., Vacek, Z., Hejcmanová, P., Podrázský, V., Král, J., Putalová, T., Moser, W.K., 2015. Effects of air pollution and climatic factors on Norway spruce forests in the Orlické hory Mts. (Czech Republic), 1979–2014. European Journal of Forest Research, 134, 1127–1142.10.1007/s10342-015-0915-x Search in Google Scholar

Valtýni, J., 1986. Water Management and Water Protection Significance of the Forest. Príroda, Bratislava, 68 p. (In Slovak.) Search in Google Scholar

Viville, D., Biron, P., Granier, A., Dambrine, E., Probst, A., 1993. Interception in a mountainous declining spruce stand in the Strengbach catchment (Vosges, France). Journal of Hydrology, 144, 273–282.10.1016/0022-1694(93)90175-9 Search in Google Scholar

Vorčák, J., Merganič, J., Škvarenina, J., Merganičová, K., 2009. Contribution to understanding precipitation regime in the mountain spruce forests of Babia hora–Oravské Beskydy using throughfall index. The Beskid Bulletin, 2, 85–94. Search in Google Scholar

Ward, A.D., Trimble, S.W., 2003. Environmental Hydrology. CRC Press, Boca Raton, 504 p.10.1201/b13148 Search in Google Scholar

Zabret, K., Rakovec, J., Šraj, M., 2018. Influence of meteorological variables on rainfall partitioning for deciduous and coniferous tree species in urban area. Journal of Hydrology, 558, 29–41.10.1016/j.jhydrol.2018.01.025 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo