1. bookVolume 15 (2013): Issue 1 (March 2013)
Journal Details
License
Format
Journal
First Published
03 Jul 2007
Publication timeframe
4 times per year
Languages
English
access type Open Access

Modification of Polyacrylamide–β–Zeolite Composite by Phytic Acid for the Removal of Lead from Aqueous Solutions

Published Online: 27 Mar 2013
Page range: 1 - 6
Journal Details
License
Format
Journal
First Published
03 Jul 2007
Publication timeframe
4 times per year
Languages
English

Polyacrylamide-zeolite composite was prepared by direct polymerization of polyacrylamide in suspensions of β-zeolite. Phytic acid was then immobilized on the composite surface. Fourier transform infrared spectrometry (FT-IR), X-Ray Diffraction (XRD) and Thermal gravimetry (TG) techniques were employed to characterize the synthesized adsorbent. The adsorptive features of the composite and the modified composite were investigated for the removal of Pb2+ from aqueous solution in view of dependency on pH, time, ion concentration, temperature, selectivity, kinetics and reusability. The adsorption isotherms were evaluated with reference to the Langmuir and Freundlich models. Thermodynamic of the system was calculated. ΔG<0 indicated that the adsorption process was spontaneous. Good compatibility of the adsorption kinetics to the pseudo-second-order model predicted that the rate-controlling step was a chemical sorption. The selectivity experiments showed that the adsorbents were selective toward Pb2+ in the presence of Zn2+ and Cd2+. The reusability of the adsorbent was tested for four regeneration cycles.

Keywords

1. Ulusoy, U. & Şimşek, S. (2005). Lead removal by polyacrylamide- bentonite and zeolite composites: Effect of phytic acid immobilization. J. Hazard. Mater. 127, 163-171. DOI: 10.1016/j.jhazmat.2005.06.036.Search in Google Scholar

2. Afridi, H.I. & Kazi, T.G. & Jamali, M.K. & Kazi, G.H. & Arain, M.B. & Jalbani, N. & shar, G.Q. (2006). Analysis of Heavy Metals in Scalp Hair Samples of Hypertensive Patients by Conventional and Microwave Digestion Methods. Spectrosc. Lett. 39, 203-214. DOI: 10.1080/00387010500531266.Search in Google Scholar

3. Zhu, X. & Cui, Y. & Chang, X. Zou, X. & Li, Z. (2009). Selective solid-phase extraction of le ad(II) fro m biological and natural wate r samples using surface-grafted lead(II)- imprinted polymers. Microchim. Acta 164, 125-132. DOI: 10.1007/ s00604-008-0045-y.Search in Google Scholar

4. Simsek, S. & Ulusoy, U. & Ceyhan, O. (2003). Adsorption of UO22+, T1+, Pb2+, Ra2+ and Ac3+ onto polyacrylamide-bentonite composite. J. Radioanal. Nucl. Chem. 256(2), 315-321. DOI: 10.1023/A:1023953805247.Search in Google Scholar

5. Mistry, S.R. & Joshi, R.S. & Maheria, K.C. (2011). Zeolite H-BEA catalysed multicomponent reaction: One-pot synthesis of amidoalkyl naphthols - Biologically active drug-like molecules. J. Chem. Sci. 123(4), 427-432.Search in Google Scholar

6. Cheetham, A.K. & Nowak, A.K. & Betteridge, P.W. (1986). Applications of molecular graphics to zeolite catalysts. J. Chem. Sci. 96(6), 411-418. DOI: 10.1007/BF02936295.Search in Google Scholar

7. Xia, Q.H. & Shen, S.C. & Song, J. & Kawi, S. & Hidajat, K. (2003) Structure, morphology, and catalytic activity of β zeolite synthesized in a fluoride medium for asymmetric hydrogenation. J. Catal. 219, 74-84. DOI: 10.1016/S0021-9517(03)00154-4.Search in Google Scholar

8. Ulusoy, U. & Akkaya, R. (2009). Adsorptive features of polyacrylamide-apatite composite for Pb2+, UO22+ and Th4+. J. Hazard. Mater. 163, 98-108. DOI: 10.1016/j.jhazmat.2008.06.064.Search in Google Scholar

9. Ulusoy, U. & Simsek, S. & Ceyhan, O. (2003). Investigations for Modification of polyacrylamide-Bentoniteby Phytic Acid and its Usability in Fe3+, Zn2+ and UO22+ Adsorption. Adsorption. 9, 165-175. DOI: 10.1023/A:1024297411400.Search in Google Scholar

10. Anirudhan, T.S. & Suchithra, P. (2009). Adsorption characteristics of humic acid-immobilized amine modified polyacrylamide/bentonite composite for cationic dyes in aqueous solutions S. J. Environ. Sci. 21, 884-891. DOI: 10.1016/ S1001-0742(08)62358-X.Search in Google Scholar

11. Crea, F. & De Stefano, C. & Milea, D. & Sammartano S. (2008). Formation and stability of phytate complexes in solution. Coord. Chem. Rev. 252, 1108-1120. DOI: 10.1016/j. ccr.2007.09.008.Search in Google Scholar

12. Simsek, S. & Ulusoy, U. (2004) UO22+, T1+, Pb2+, Ra2+, Bi3+ and Ac3+ adsorption onto polyacrylamide.zeolite composite and its modified composition by phytic acid. J. Radioanal. Nucl. Chem. 261(1), 79-86. DOI: 10.1023/B:JR NC.0000030938.98515.82.Search in Google Scholar

13. Kalavathy, M.H. & Karthikeyan, T. & Rajgopal, S. & Miranda, L.R. (2005). Kinetic and isotherm studies of Cu(II) adsorption onto H3PO4-activated rubber wood sawdust J. Colloid Interface Sci. 292, 354-362. DOI: 10.1016/j.jcis.2005.05.087.Search in Google Scholar

14. Ulusoy, U. & Akkaya, R. (2008). Adsorptive features of chitosan entrapped in polyacrylamide hydrogel for Pb2+, UO22+, and Th4+. J. Hazard. Mater. 151, 380-388. DOI: 10.1016/j.jhazmat.2007.05.084.Search in Google Scholar

15. Kabbashi, N. & Atieh, M. & Al-Mamun, A. & Mirghami, M. & Alam, M. & Yahya, N. (2009). Kinetic adsorption of application of carbon nanotubes for Pb(II) removal from aqueous solution. J. Environ. Sci. 21, 539-544. DOI: 10.1016/ s1001-0742(08)62305-0.Search in Google Scholar

16. Hameed, B.H. & Sa lman, J.M. & Ahmad, A.L. (2009). Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones. J. Hazard. Mater. 163, 121-126. DOI: 10.1016/j.jhazmat.2008.06.069.Search in Google Scholar

17. El-Halwany, M.M. (2010). Study of adsorption isotherms and kinetic models for Methylene Blue adsorption on activated carbon developed from Egyptian rice hull (Part II). Desalination 250, 208-213. DOI: 10.1016/j.desal.2008.07.030.Search in Google Scholar

18. Ahmaruzzaman, M. & Laxmi Gayatri, S. (2010). Batch adsorption of 4-nitrophenol by acid activated jute stick char: Equilibrium, kinetic and thermodynamic studies. J. Chem. Eng. 158, 173-180. DOI: 10.1016/j.cej.2009.12.027.Search in Google Scholar

19. Ulusoy, U. & Senol, Z.M. (2010). Thallium adsorption onto polyacryamide-aluminosilicate composites: A Tl isotope tracer study. J. Chem. Eng. 162, 97-105. DOI: 10.1016/j. cej.2010.05.005.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo