1. bookVolume 15 (2013): Issue 4 (December 2013)
Journal Details
License
Format
Journal
eISSN
1899-4741
ISSN
1509-8117
First Published
03 Jul 2007
Publication timeframe
4 times per year
Languages
English
access type Open Access

Effect of 1-substituted imidazole derivatives for the curing process of epoxy- -isocyanate composition

Published Online: 31 Dec 2013
Volume & Issue: Volume 15 (2013) - Issue 4 (December 2013)
Page range: 36 - 41
Journal Details
License
Format
Journal
eISSN
1899-4741
ISSN
1509-8117
First Published
03 Jul 2007
Publication timeframe
4 times per year
Languages
English
Abstract

The kinetics of the curing process of isocyanate-epoxy materials hardened in the presence of 1- substituted imidazole derivatives was studied by the Coast-Redfern method. The extent of a conversion parameter of the curing process in two ways was calculated: DSC (peak area integration) and rheology (viscosity changes). The activation energy values were determined for epoxy-isocyanate cured in the presence of 0.5; 1.0 and 2.0 phr 1-substituted imidazole derivatives respectively. Increasing of accelerators amount results in decreasing the activation energy and other kinetic parameters.

Keywords

1. Lee, H. & Neville, K. (2012). Epoxy Resins: Their Applications And Technology. Literary Licensing, LLC.Search in Google Scholar

2. Parodi, F. Post. (2007). Curing and high-performance isocyanate-epoxy FPR resin systems for structural composites and heavy-duty electrical/electromechanical applications. http://www.fpchem.comSearch in Google Scholar

3. Koenig, R. & Gon, J. (1992). Epoxy terminated polyoxazolidones and process for the preparation thereof. US Pat. 5 112 932.Search in Google Scholar

4. Senger, J.S., Yilgor, I., McGrath, J.E. & Patsiga, R.A. (1989). Isocyanate-epoxy reactions in bulk and solution. J. Appl. Polym. Sci., 38, 373-382, DOI: 10.1002/app.1989.070380218.10.1002/app.1989.070380218Open DOISearch in Google Scholar

5. Caille, D., Pascault, J.P. & Tighzert, L. (1990). Reaction of a diepoxide with a diisocyanate in bulk. Polym. Bull., 24, 23-30.10.1007/BF00298317Open DOISearch in Google Scholar

6. Caille, D., Pascault, J.P. & Tighzert, L. (1990). Reaction of a diepoxide with a diisocyanate in bulk. Polym. Bull., 24, 31-36.10.1007/BF00298318Open DOISearch in Google Scholar

7. De Meuse, M.T., Gillham, J.K. & Parodi, F. (1997). Evolution of properties of an isocyanate/epoxy thermosetting system during cure: continuous heating (CHT) and izothermal time-temperature-transformation (TTT) cure diagrams. J. Appl. Polym. Sci., 64, 15-25, DOI: 10.1002/(SICI)1097- -4628(19970404)64:1<15::AID-APP2>3.0.CO;2-U.10.1002/(SICI)1097--4628(19970404)64:1<15::AID-APP2>3.0.CO;2-UOpen DOISearch in Google Scholar

8. Sala, G. (2000). Impact behaviour of heat-resistant toughened composites. Composites Part B: Eng., 31, 161-173, DOI: http://dx.doi.org/10.1016/S1359-8368(00)00006-8.10.1016/S1359-8368(00)00006-8Search in Google Scholar

9. Ardenengo III, A.J. & Corcoron, P.H. (1991). Isocyanurate - crosslinked epoxy resin coatings containing imidazolethione catalysts. PCT Int. Appl. WO 91 189 937.Search in Google Scholar

10. Thermosetting adhesive and method of making some. (1998). PCT Int. Appl. WO 98 006 767.Search in Google Scholar

11. Barsotti, R.J., Harper, L.R. & Nordstrom J.D. (2002). Oligomeric epoxy/isocyanate systems. US Pat. 6 426 148.Search in Google Scholar

12. Pilawka, R. & Goracy, K. (2011). Investigations of curing process for epoxy-isocyanate compositions. Kompozyty, 11, 44-48.Search in Google Scholar

13. Pilawka, R. & Goracy, K. (2011). In: Monograph: Structural polymers and composites, Gliwice, 362-370.Search in Google Scholar

14. Pilawka, R. (2010). In: Monograph: Structural polymers and composites, Gliwice, 258-261 (in Polish).Search in Google Scholar

15. Dileone, R.R. (1970). Synthesis of poly-2-oxazolidones from diisocyanates and diepoxides. J. Polym. Sci., Part A, 8, 609-615, DOI: 10.1002/pol.1970.150080304.10.1002/pol.1970.150080304Open DOISearch in Google Scholar

16. Speranza, G.P. & Peppe, W.J. (1958). Preparation of substituted 2-oxazolidones from 1,2-epoxides and isocyanates. J. Org. Chem., 23, 1992-1998.10.1021/jo01106a027Search in Google Scholar

17. Vyazovkin, S., Burnham, A.K., Criado, J.M., Pérez-Maqueda, L.A., Popescu, C. & Sbirrazzuoli, N. (2011). ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta., 520, 1-19, DOI:10.1016/j.tca.2011.03.034.10.1016/j.tca.2011.03.034Open DOISearch in Google Scholar

18. Ozawa, T. (1965). A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Jpn. 38, 1881-1886, DOI: 10.1246/bcsj.38.1881.10.1246/bcsj.38.1881Open DOISearch in Google Scholar

19. Friedman, H.L. (1964). Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J. Polym. Sci. Part C Polym. Symp. 6, 183-195, DOI: 10.1002/pol.1969.110070109.10.1002/pol.1969.110070109Open DOISearch in Google Scholar

20. Kissinger, H.E. (1957). Reaction kinetics in differential thermal analysis. Anal. Chem. 21, 1702-1706, DOI: 10.1021/ ac60131a045.10.1021/ac60131a045Open DOISearch in Google Scholar

21. Wang, H., Yang, J., Long, S., Wang, X., Yang, Z. & Li, G. (2004). Studies on thermal degradation of poly (phenylene sulphide sulfone). Polym. Degrad. Stabil. 83, 229-235, DOI: 10.1016/S0141-3910(03)00266-0.10.1016/S0141-3910(03)00266-0Open DOISearch in Google Scholar

22. Tonbul, Y. & Yurdakoc, K. (2007). Thermal behavior and pyrolysis of Avgamasya asphaltite Oil Shale 25, 547-560.10.3176/oil.2007.4.06Search in Google Scholar

23. Coats, A.W., Redfern, J.P. (1964). Kinetic Parameters from Thermogravimetric Data. Nature, 201, 68-69, DOI: 10.1038/201068a0.10.1038/201068a0Open DOISearch in Google Scholar

24. Criado, J.M., Malek, J. & Ortega, A. (1989). Applicability of the master plots in kinetic analysis of a non-isothermal rate. Thermochim. Acta., 147, 377-385, DOI: 10.1016/0040-6031(89)85192-5.10.1016/0040-6031(89)85192-5Open DOISearch in Google Scholar

25. Malek, J. (1992) The kinetic analysis of non-isothermal data. Thermochim. Acta., 200, 257-269, DOI: 10.1016/0040-6031(92)85118-F.10.1016/0040-6031(92)85118-FOpen DOISearch in Google Scholar

26. Sbirrazzuoli, N., Girault, Y., Elegant, L. & Malek, J. (1995). Thermochim. Acta., 249, 179-187, DOI: 10.1016/0040-6031(95)90690-8.10.1016/0040-6031(95)90690-8Open DOISearch in Google Scholar

27. Senum, G.I. & Yang, R.T. (1977). Rational approximations of the integral of the Arrhenius function. J. Therm. Anal. Calorim. 11, 445-447; DOI: 10.1007/BF01903696.10.1007/BF01903696Open DOISearch in Google Scholar

28. Simon, P. (2011). Fourty years of the Sesták-Berggren equation, Thermochim. Acta 520, 156-157, DOI: 10.1016/j. tca.2011.03.030. 29 Sesták, J. & Berggren, G. (1971). Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures, Thermochim. Acta, 3, 1-12, http://dx.doi.org/10.1016/0040-6031(71)85051-7.10.1016/j.tca.2011.03.030.29Sesták,J.&.(1971).-Thermochim.3,1-12,http://dx.doi.org/10.1016/0040-6031(71)85051-7Open DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo