1. bookVolume 16 (2014): Issue 1 (March 2014)
Journal Details
License
Format
Journal
First Published
03 Jul 2007
Publication timeframe
4 times per year
Languages
English
access type Open Access

Selective recovery of cobalt(II) towards lithium(I) from chloride media by transport across polymer inclusion membrane with triisooctylamine

Published Online: 25 Mar 2014
Page range: 15 - 20
Journal Details
License
Format
Journal
First Published
03 Jul 2007
Publication timeframe
4 times per year
Languages
English

In this work the selective transport of cobalt(II) and lithium(I) ions from aqueous chloride solutions through polymer inclusion membranes (PIMs) is presented. Triisooctylamine (TIOA) has been applied as the ion carrier in membrane. The effects of various parameters on the transport of Co(II) and Li(I) were studied. The obtained results show that Co(II) ions were effectively removed from source phase through PIM containing 32 wt.% TIOA, 22 wt.% CTA (cellulose triacetate) and 46 wt.% ONPOE (o-nitrophenyl octyl ether) or ONPPE (o-nitrophenyl pentyl ether) into deionized water as the receiving phase. The results indicate that there is a possibility of polymer inclusion membranes application to recover Co(II) and Li(I) from aqueous chloride solutions

Keywords

1. Bielanski, A. (2010). Inorganic Chemistry, PWN, Poland.Search in Google Scholar

2. Chagnes, A. & Pospiech, B. (2013). A brief review on hydrometallurgical technologies for recycling spent lithium- -ion batteries, J. Chem. Technol. Biotechnol. 88 (7) 1191-1199. DOI: 10.1002/jctb.4053. Search in Google Scholar

3. Pospiech, B. (2012). Selective extraction of cobalt(II) and lithium(I) using phosphorous acids from leach liquor of spent lithium-ion batteries. Rudy i Metale Nieżelazne 6, 368-373.Search in Google Scholar

4. Chen, L., Tang, X., Zhang, Y., Li, L., Zeng, Z. & Zhang, Y. (2011). Process for the recovery of cobalt oxalate from lithium ion batteries. Hydrometallurgy 108, 80-86. DOI: 10.1016/j. hydromet.2011.04.013.Search in Google Scholar

5. Väyrynen, A. & Salminen, J. (2012). Lithium ion battery production. J. Chem. Thermodynamics 46, 80-85. DOI: 10.1016/j. jct.2011.09.005.Search in Google Scholar

6. Lee, J.Ch. & Pandey, B.D. (2012). Bio-processing of solid wastes and secondary resources for metal extraction - A review. Waste Management 32, 3018. DOI: 10.1016/j. wasman.2011.08.010.Search in Google Scholar

7. Shin, S.M., Kim, N.H., Sohn, J.S., Yang, D.H. & Kim, Y.H. (2005). Development of a metal recovery process from Li-ion battery wastes. Hydrometallurgy 79, 172-181. DOI: 10.1016/j. hydromet.2005.06.004.Search in Google Scholar

8. Li, L., Ge, J., Wu, F., Chen, R., Chen, S. & Wu, B. (2010). Recovery of cobalt and lithium from spent lithium-ion batteries using organic citric acid as leachant. J. Hazard. Mater. 176, 288-293. DOI: 10.1016/j.hazmat.2009.11.026.Search in Google Scholar

9. Zhao, J.M., Shen, X.Y., Deng, F.L., Wang, F.C., Wu, Y. & Liu, H.Z. (2011). Synergistic extraction and separation of valuable metals from waste cathodic material of lithium ion batteries using Cyanex 272. Sep. Purif. Technol. 78, 345-351. DOI: 10.1016/j.seppur.2010.12.024.Search in Google Scholar

10. Sun, L. & Qiu, K. (2011). Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium ion batteries. J. Hazard. Mater. 194, 378-384. DOI: 10.1016/j.jhazmat.2011.07.114.Search in Google Scholar

11. Swain, B., Jeong, J., Lee, J., Lee, G.H. & Sohn, J. (2007). Hydrometallurgical process for recovery of cobalt from waste cathodic active material generated during manufacturing of lithium ion batteries. J. Power Sources 167, 536-544. DOI: 10.1016/j.powsour.2007.02.046.Search in Google Scholar

12. Suzuki, T., Nakamura, T., Inoue, Y., Niinae, M. & Shibata, J. (2012). A hydrometallurgical process for the separation of aluminum, cobalt, copper and lithium in acidic sulfate media. Sep. Purif. Technol. 98, 396-401. DOI: org/10.1016/j. seppur.2012.06.034.Search in Google Scholar

13. Swain, B., Jeong, J., Lee, J. & Lee, G. (2007). Extraction of Co(II) by supported liquid membrane and solvent extraction using Cyanex 272 as an extractant: A comparison study. J. Membr. Sci. 288, 139-148. DOI: 10.1016/j.memsci.2006.11.012.Search in Google Scholar

14. Swain, B., Jeong, J., Yoo, K. & Lee, J. (2010). Synergistic separation of Co(II)/Li(I) for the recycling of LIB industry wastes by supported liquid membrane using Cyanex 272 and DP-8R. Hydrometallurgy 101, 20-27. DOI: 10.1016/j.hydromet. 2009.11.012.Search in Google Scholar

15. Alguacil, F.J., Alonso, M., Lopez, F.A., Lopez-Delgado, A. (2011). Active transport of cobalt(II) through a supported liquid membrane using the mixture DP8R and Acorga M5640 as extractant. Desalination 281, 221-225. DOI: 10.1016/j.desal. 2011.07.064.Search in Google Scholar

16. Sürücü, A., Eyüpoglu, V., Tutkun, O. (2010). Selective separation of cobalt and nickel by supported liquid membranes. Desalination 250, 1155-1156. DOI: 10.1016/j.desal.2009.09.131.Search in Google Scholar

17. Kozłowski, C.A., Kozlowska, J., Pellowski, W. & Walkowiak, W. (2006). Separation of cobalt-60, strontium-90, and cesium-137 radioisotopes by competitive transport across polymer inclusion membranes with organophosphorous acids. Desalination 198, 141-148. DOI: 10.1016/j.desal.2006.02.005.Search in Google Scholar

18. Kagaya, S. Cattrall, R.W. & Kolev, S.D. (2011). Solid- -phase extraction of cobalt(II) from lithium chloride solutions using a poly(vinyl chloride)-based polymer inclusion membrane with Aliquat 336 as the carrier. Anal. Sci. 27, 653-7.Search in Google Scholar

19. Blitz-Raith, A.H., Paimin, R., Cattral, R.W. & Kolev, S.D. (2007). Separation of Co(II) from Ni(II) by solid phase extrac- tion into Aliquat 336 chloride immobilized in poly(vinyl chloride), Talanta 71, 419-423. DOI: 10.1016/j.talanta.2006.04.017.Search in Google Scholar

20. Pospiech, B. (2012). Separation of silver(I) and copper(II) from aqueous solutions by transport through polymer inclusion membranes with Cyanex 471X. Sep. Sci. Technol. 47, 1413-1419. DOI: org/10.1080/01496395.2012.672521.Search in Google Scholar

21. Pospiech, B. & Walkowiak, W. (2007). Separation of copper(II), cobalt(II) and nickel(II) from chloride solutions by polymer inclusion membranes. Sep. Purif. Technol. 57, 461-465.DOI: 10.1016/j.tseppur.2006.07.005.Search in Google Scholar

22. Danesi, R. (1984). Separation of metal species by supported liquid membranes. Sep. Sci. Technol. 19, 857-894.Search in Google Scholar

23. Logeat, M., Mankowski, G., Molinier, J. & Lenzi, M. (1982). Complete separation of copper and cobalt by solvent extraction with triisooctylamine, Hydrometallurgy 9, 105-113.Search in Google Scholar

24. Pospiech, B. (2013). Hydrometallurgical recovery of cobalt(II) from acidic chloride solutions by transport through polymer inclusion membranes, Phys. Problems of Miner. Process., 49(2) 641-649.Search in Google Scholar

25. Walkowiak, W., Bartsch, R.A., Kozlowski, C., Gega, J., Charewicz, W.A. & Amiri-Eliasi, B. (2000). Separation and removal of metal ionic species by polymer inclusion membranes. J. Radioanal. Nucl. Chem. 246 (32) 643-650. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo