1. bookVolume 16 (2014): Issue 2 (June 2014)
Journal Details
License
Format
Journal
eISSN
1899-4741
First Published
03 Jul 2007
Publication timeframe
4 times per year
Languages
English
access type Open Access

Removal of Ni2+ from Aqueous Solutions by Adsorption Onto Magnetic Multiwalled Carbon Nanotube Nanocomposite

Published Online: 26 Jun 2014
Volume & Issue: Volume 16 (2014) - Issue 2 (June 2014)
Page range: 87 - 94
Journal Details
License
Format
Journal
eISSN
1899-4741
First Published
03 Jul 2007
Publication timeframe
4 times per year
Languages
English
Abstract

The removal of Ni2+ from aqueous solution by magnetic multiwalled carbon nanotube nanocomposite (MMWCNTs-C) was investigated. MMWCNTs-C was characterized by X-ray Diffraction method (XRD), High-Resolution Transmission Electron Microscopy (HRTEM), surface area (BET), and Fourier Transform-Infrared Spectroscopy (FTIR). The effects of initial concentration, contact time, solution pH, and temperature on the Ni2+ adsorption onto MMWCNTs-C were studied. The Langmuir and Freundlich isotherm models were applied to fit the adsorption data. The results showed that the adsorption isotherm data were fitted well to the Langmuir isotherm model with the maximum monolayer adsorption capacity of 2.11 mg g–1. The adsorption kinetics was best described by the pseudo-second-order model. The thermodynamic parameters, such as ΔHo, ΔGo and ΔSo, were also determined and evaluated. The adsorption of Ni2+ is generally spontaneous and thermodynamically favorable. The values of ΔHo and ΔGo indicate that the adsorption of Ni2+ onto MMWCNTs-C was a physisorption process.

Keywords

1. Krishna, R.H. & Swamy, A. (2011). Kinetic and isotherm modeling of adsorption of Ni (II) form aqueous solutions onto powder of papaya seeds. Int. J. Sci. Res. Publ. 1(1), 1–6.Search in Google Scholar

2. Al-Asheh, S., Banat, F. & Mobai, F. (1999). Sorption of copper and nickel by spent animal bones. Chemosphere 39(12), 2087–2096.10.1016/S0045-6535(99)00098-3Search in Google Scholar

3. Vijayaraghavan, K., Jegan, J., Palanivelu, K. & Velan, M. (2004). Removal of nickel(II) ions from aqueous solution using crab shell particles in a packed bed up-flow column. J. Hazard. Mater. B113, 223–230. DOI: 10.1016/j.jhazmat.2004.06.014.10.1016/j.jhazmat.2004.06.014Search in Google Scholar

4. Vijayaraghavan, K., Jegan, J., Palanivelu, K. & Velan, M. (2005). Biosorption of cobalt(II) and nickel(II) by seaweeds: batch and column studies. Sep. Purif. Technol. 44, 53–59. DOI: 10.1016/j.seppur.2004.12.003.10.1016/j.seppur.2004.12.003Search in Google Scholar

5. Panneerselvam, P., Morad, N. & Tan, K.A. (2011). Magnetic nanoparticle (Fe3O4) impregnated onto tea waste for the removal of nickel(II) from aqueous solution. J. Hazard. Mater. 186, 160–168. DOI: 10.1016/j.jhazmat.2010.10.102.10.1016/j.jhazmat.2010.10.102Search in Google Scholar

6. Hasar, H. (2003). Adsorption of nickel(II) from aqueous solution onto activated carbon prepared from almond husk. J. Hazard. Mater. 97, 49–57. DOI: 10.1016/s0304-3894(02)00237-6.10.1016/S0304-3894(02)00237-6Search in Google Scholar

7. Fiol, N., Villaescusa, I., Martinez, M., Miralles, N., Poch, J. & Serarols, J. (2006). Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste. Sep. Purif. Technol. 50, 132–140. DOI: 10.1016/j.seppur.2005.11.016.10.1016/j.seppur.2005.11.016Search in Google Scholar

8. Rao, M., Parwate, A.V. & Bhole, A.G. (2002). Removal of Cr6+ and Ni2+ from aqueous solution using bagasse and fly ash. Waste Manage. 22, 821–830.10.1016/S0956-053X(02)00011-9Search in Google Scholar

9. Tofighy, M.A. & Mohammadi, T. (2011). Adsorption of divalent heavy metal ions from water using carbon nanotube sheets. J. Hazard. Mater. 185, 140–147. DOI: 10.1016/j. jhazmat.2010.09.008.Search in Google Scholar

10. Li, Y.H., Ding, J., Luan, Z., Di, Z., Zhu, Y., Xu, C., Wu, D. & Wei, B. (2003). Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41, 2787–2792. DOI: 10.1016/S00086223(03)00392-0.Search in Google Scholar

11. Gao, Z., Bandosz, T.J., Zhao, Z., Han, M. & Qiu, J. (2009). Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes. J. Hazard. Mater. 167, 357–365. DOI: 10.1016/j.jhazmat.2009.01.050.10.1016/j.jhazmat.2009.01.05019264402Search in Google Scholar

12. Kandah, M.I. & Meunier, J.L. (2007). Removal of nickel ions from water by multi-walled carbon nanotubes. J. Hazard. Mater. 146(1–2), 283–288. DOI: 10.1016/j.jhazmat.2006.12.019.10.1016/j.jhazmat.2006.12.01917196328Search in Google Scholar

13. Yang, S., Li, J., Shao, D., Hu, J. & Wang, X. (2009). Adsorption of Ni(II) on oxidized multi-walled carbon nanotubes: Effect of contact time, pH, foreign ions and PAA. J. Hazard. Mater. 166, 109–116. DOI: 10.1016/j.jhazmat.2008.11.003.10.1016/j.jhazmat.2008.11.00319097690Search in Google Scholar

14. Chen, C., Hu, J., Shao, D., Li, J. & Wang, X. (2009). Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II). J. Hazard. Mater. 164, 923–928. DOI: 10.1016/j.jhazmat.2008.08.089.10.1016/j.jhazmat.2008.08.08918842337Search in Google Scholar

15. Jeon, S., Yun, J., Lee Y.S. & Kim, H.I. (2010). Removal of Cu(II) ions by Alginate/Carbon Nanotube/Maghemite Composite Magnetic Beads. Carbon Lett. 11(2), 117–121.10.5714/CL.2010.11.2.117Search in Google Scholar

16. Gupta, V.K., Agarwal, S. & Saleh, T.A. (2011). Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water Res. 45(6), 2207–2212. DOI: 10.1016/j.watres.2011.01.012.10.1016/j.watres.2011.01.01221303713Search in Google Scholar

17. Ma, J., Zhu, Z., Chen, B., Yang, M., Zhou, H., Li, C., Yu, F. & Chen, J. (2013). One-pot, large-scale synthesis of magnetic activated carbon nanotubes and their applications for arsenic removal. J. Mater. Chem. A 1, 4662–4666. DOI: 10.1039/C3TA10329C.10.1039/c3ta10329cSearch in Google Scholar

18. Peng, X., Luan, Z., Di, Z., Zhang, Z. & Zhu, C. (2005). Carbon nanotubes-iron oxides magnetic composites as adsorbent for removal of Pb(II) and Cu(II) from water. Carbon 43(4), 880–883. DOI: 10.1016/j.carbon.2004.11.009.10.1016/j.carbon.2004.11.009Search in Google Scholar

19. Pełech, I. (2010). Preparation of carbon nanotubes using CVD method. Pol. J. Chem. Tech. 12(3), 45–49. DOI: 10.2478/ v10026-010-0033-y.10.2478/v10026-010-0033-ySearch in Google Scholar

20. Vijayaraghavan, K., Won, S.W. & Yun, Y.S. (2009). Treatment of complex Remazol dye effiuent using sawdust- and coal-based activated carbons. J. Hazard. Mater. 167, 790–796. DOI: 10.1016/j.jhazmat.2009.01.055.10.1016/j.jhazmat.2009.01.05519231078Search in Google Scholar

21. Sykuła-Zając, A., Turek, M., Mathew, M.P., Patai, F., Horvat, M. & Jabłońska, J. (2010). Determination of nickel in tea by using dimethylglyoxime method. Scientific Bulletin of the Technical University of Lodz. Food Chemistry and Biotechnology 74(1081), 5–11.Search in Google Scholar

22. Konicki, W., Pełech, I., Mijowska, E. & Jasińska, I. (2013). Adsorption Kinetics of Acid Dye Acid Red 88 onto Magnetic Multi-Walled Carbon Nanotubes-Fe3C Nanocomposite. Clean-Soil, Air, Water. In press. DOI: 10.1002/clen.201200458.10.1002/clen.201200458Search in Google Scholar

23. Chairat, M., Rattanaphani, S. & Bremner, J.B., Rattanaphani, V. (2008). Adsorption kinetic study of lac dyeing on cotton. Dyes Pigm. 76, 435–439. DOI: 10.1016/j.dyepig.2006.09.008.10.1016/j.dyepig.2006.09.008Search in Google Scholar

24. Kumar, P.S. & Kirthika, K. (2009). Equilibrium and kinetic study of adsorption of nickel from aqueous solution onto bael tree leaf powder. J. Eng. Sci. Technol. 4(4), 351–363.Search in Google Scholar

25. Ai, L., Zhou, Y. & Jiang, J. (2011). Removal of methylene blue from aqueous solution by montmorillonite/CoFe2O4 composite with magnetic separation performance. Desalination 266, 72–77. DOI: 10.1016/j.desal.2010.08.004.10.1016/j.desal.2010.08.004Search in Google Scholar

26. Kapoor, A. & Viraragavan, T. (1998). Heavy metal biosorption sites in Aspergillus Niger. Bioresour. Technol. 61, 221–227.10.1016/S0960-8524(97)00055-2Search in Google Scholar

27. Kadivelu, K., Thamariselvi, K. & Namasivayam, C. (2001). Adsorption of Ni(II) from aqueous solution onto activated carbon prepared from Coirpith. Sep. Purif. Technol. 124, 497–505.10.1016/S1383-5866(01)00149-6Search in Google Scholar

28. Suemitsu, R., Uenishi, R., Akashi, I. & Kakano, M. (1986). The use of dyestuff-treated rice hulls for removal of heavy metals from wastewater. J. Appl. Polym. Sci. 31, 74–83.10.1002/app.1986.070310108Search in Google Scholar

29. Al-Rub, F.A.A., Kandah, M. & Aldabaibeh, N. (2002). Nickel removal from aqueous solution by using sheep Manure Waste. Eng. Life Sci. 2, 111–116. DOI: 10.1002/16182863(200204).Search in Google Scholar

30. Padmavathy, V. (2008). Biosorption of Ni(II) ions on Baker’s yeast: kinetic, thermodynamic and desorption studies. Bioresour. Technol. 99, 3100–3109. DOI: 10.1016/j. biortech.2007.05.070.Search in Google Scholar

31. Ho, Y.S., Jhonwase, D.A. & Forster, C.F. (1995). Batch nickel removal from aqueous solution by Sphagnum moss peat. Water Res. 29, 1327–1332.10.1016/0043-1354(94)00236-ZSearch in Google Scholar

32. Ewecharoen, A., Thiravetyan, P. & Nakbanpote, W. (2008). Comparison of nickel adsorption form electroplating rinse water by coir pith and modified coir pith. Chem. Eng. J. 137, 181–188. DOI: 10.1016/j.cej.2007.04.007.10.1016/j.cej.2007.04.007Search in Google Scholar

33. Huang, C., Ying-Chien, C. & Ming-Ren, L. (1996). Adsorption of Cu(II) and Ni(II) by palletized biopolimer. J. Hazard. Mater. 45, 265–267.10.1016/0304-3894(95)00096-8Search in Google Scholar

34. Sharma, Y.C. & Srivastava, V. (2010). Separation of Ni(II) ions from aqueous solutions by magnetic nanoparticles. J. Chem. Eng. Data 55, 1441–1442. DOI: 10.1021/je900619d.10.1021/je900619dSearch in Google Scholar

35. Meena, A.K., Mishra, G.K., Rai, P.K., Rajgopal, C. & Nagar, P.N. (2005). Removal of heavy metal ions from aqueous solution using carbon aerogel as an adsorbent. J. Hazard. Mater. 122, 161–170. DOI: 10.1016/j.jhazmat.2005.03.024.10.1016/j.jhazmat.2005.03.024Search in Google Scholar

36. Karagoz, S., Tay, T., Ucar, S. & Erdem, M. (2008). Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption. Bioresour. Technol. 99, 6214–6222. DOI: 10.1016/j.biortech.2007.12.019.10.1016/j.biortech.2007.12.019Search in Google Scholar

37. Kara, M., Yuzer, H., Sabah, E. & Celik, M.S. (2003). Adsorption of cobalt from aqueous solutions onto sepiolite. Water Res. 37, 224–232.10.1016/S0043-1354(02)00265-8Search in Google Scholar

38. Prabakaran, R. & Arivoli, S. (2012). Adsorption kinetics, equilibrium and thermodynamic studies of Nickel adsorption onto Thespesia Populnea bark as biosorbent from aqueous solutions. Euro. J. Appl. Eng. Sci. Res. 1(4), 134–142.Search in Google Scholar

39. Jaycock, M.J. & Parfitt, G.D. (1981). Chem. .Interf. Ellis Horwood Ltd., Onichester.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo