1. bookVolume 23 (2021): Issue 3 (September 2021)
Journal Details
First Published
03 Jul 2007
Publication timeframe
4 times per year
access type Open Access

Green synthesis of thioxoimidazolidine derivative ligand: Spectroscopic, thermal and biological assignments of new Cu(II), Co(II), and Ni(II) chelates in neutral system

Published Online: 14 Oct 2021
Page range: 1 - 9
Journal Details
First Published
03 Jul 2007
Publication timeframe
4 times per year

Eco-friendly synthesis of ethyl 3-(4-oxo-3-(1-(pyridin-3-yl)ethylideneamino)-2-thioxoimidazolidin-1-yl)propanoate (4) ligand (L) using microwave irradiation technique was described. The structure of thioxoimidazolidine derivative ligand compound has been established based on different types of analyses such as infrared, 1H-NMR, 13C-NMR, and mass spectra as well as elemental analysis. The copper, cobalt, and nickel(II) complexes with molecular formula [M(L)(H2O)4]Cl2 (where M = Co(II), Ni(II), and Cu(II), L = thioxoimidazolidine derivative ligand), have been prepared and well-characterized using microanalytical, conductivity measurements, magnetic, spectroscopic, and physical analyses. Upon the outcome results of analyses, the stoichiometry of the synthesized complexes is 1:1 (M:L). The molar conductance values concluded that the behavior of metal complexes was electrolytes. The 3-(4-oxo-3-(1-(pyridin-3-yl)ethylideneamino)-2-thioxoimidazolidin-1-yl)propanoate chelate acts as a monovalent bidentate fashion via nitrogen and oxygen atoms of both thioxoimidazolidine and propanoate ester moieties. The geometric structures of the synthesized metal complexes are an octahedral configuration based on spectroscopic and magnetic moment studies. The thermogravimetric assignments deduced that the presence of four coordinated water molecules. The synthesized copper(II), cobalt(II), and nickel(II) complexes were biologically checked against G+ and G- bacteria and two species of fungi (Aspergillus Nigaer, and Penicillium Sp.).


1. Johnson, T.B. & Chernoff, L.H.J. (1912). Hydantoins: Synthesis of 5-Thiohydantoins [Nineteenth Paper]. Am. Chem. Soc. 34(9), 1208–1213. DOI: 10.1021/ja02210a011. Search in Google Scholar

2. Seki, M., Kajiwara, D., Mizutani, H. & Minamiguchi, K. (2020). Analysis of novel enzalutamide-resistant cells: up-regulation of testis-specific Y-encoded protein gene promotes the expression of androgen receptor splicing variant 7 Transl. Cancer Res., 2020, 9(10), 6232–6245. DOI: 10.21037/tcr-20-1463. Search in Google Scholar

3. Kyriakopoulos, C.E., Heath, E.I., Ferrari, A., Sperger, J.M., Singh, A., Perlman, S.B., Roth, A.R., Perk, T.G., Modelska, K. & Porcari, A., et al. (2020). Exploring Spatial-Temporal Changes in 18F-Sodium Fluoride PET/CT and Circulating Tumor Cells in Metastatic Castration-Resistant Prostate Cancer Treated with Enzalutamide. J. Clin. Oncol. 38(31), 3662–3671. DOI: 10.1200/jco.20.00348. Search in Google Scholar

4. Al-Salama, Z.T., (2018). Apalutamide: First Global Approval, Drugs, 78, 699–705. DOI: 10.1007/s40265-018-0900-z. Search in Google Scholar

5. Dellis, A.E. & Papatsoris, A.G., (2018). Apalutamide: the established and emerging roles in the treatment of advanced prostate cancer. Expert. Opin. Investig. Drugs. 27(6), 553–559. DOI: 10.1080/13543784.2018.1484107. Search in Google Scholar

6. Chong, J.T, Oh, W.K. & Liaw, B.C., (2018). Profile of apalutamide in the treatment of metastatic castration-resistant prostate cancer: evidence to dateOnco. Targets Ther. 11, 2141–2147. DOI: 10.2147/OTT.S147168. Search in Google Scholar

7. Qamar, R., Saeed, A., Saeed, M. & Seo, S.Y., et al., (2018). Synthesis and enzyme inhibitory kinetics of some novel 3-(substituted benzoyl)-2-thioxoimidazolidin-4-one derivatives as α-glucosidase/α-amylase inhibitors. Med. Chem. Res. 27(5), 1528–1537. DOI: 10.1007/s00044-018-2170-4. Search in Google Scholar

8. Desai, N.C., Vaghani, H.V., Karkar, T.J., Patel, B.Y. & Jadeja, K.A., (2017). Synthesis and antimicrobial studies of 1,2,3,4-tetrahydropyrimidine bearing imidazole analogues. Indian. J. Chem., 2017, 56B, 438–446. http://nopr.niscair.res.in/handle/123456789/41188. Search in Google Scholar

9. Chérouvrier, J.R., Carreaux, F. & Bazureau, J.P., (2004). Reactivity of 2-Thiohydantoins Towards Various Electrophilic Reagents: Applications to the Synthesis of New 2-Ylidene-3,5-dihydro-4H-imidazol-4-ones. Molecules, 9(10), 867–875. DOI: 10.1002/chin.200306129. Search in Google Scholar

10. Khodair, A.I., El-Subbagh, H.I., El-Emam, A.A. (1997). Synthesis of certain 5-substituted 2-thiohydantoin derivatives as potential cytotoxic and antiviral agents. Boll Chim Farm, 136, 561–567. Molecules 2006, 11 749. Search in Google Scholar

11. Wang, Z.D., Sheikh, S.O., Zhang, Y. (2006). A Simple Synthesis of 2-Thiohydantoins. Molecules, 11, 739–750. DOI: 10.3390/11100739. Search in Google Scholar

12. Takahashi, A., Matsuoka, H., Ozawa, Y. & Uda, Y. (1998). Antimutagenic Properties of 3,5-Disubstituted 2-Thiohydantoins. J. Agric. Food Chem., 46, 5037–5042. DOI:10.1021/jf980430x; Search in Google Scholar

13. Froelich, E.; Fruehan, A.; Jackman, M.; Kirchner, F.K.; Alexander, E.J.; Archer, S. (1954). 5-Heptyl-2-Thiohydantion, A New Antitubercular Agent. J. Am. Chem. Soc. 1954, 76, 3099–3100. DOI: 10.1021/ja01640a088. Search in Google Scholar

14. Al-Obaid, A.M.; El-Subbagh, H.I.; Khodair, A.I. & Elmazar, M.M. (1996). 5-substituted-2-thiohydantoin analogs as a novel class of antitumor agents. Anticancer Drugs, 7, 873. DOI: 10.1097/00001813-199611000-00009. Search in Google Scholar

15. Lacroix, G., Bascou, J.-P., Perez, J. & Gadras, A.U.S. Pat. 6,018,052, 2000; Search in Google Scholar

16. Lacroix, G., Bascou, J.P., Perez, J. & Gadras, A.U.S. Pat. 5,650,519, 1997; Search in Google Scholar

17. Marton, J., Enisz, J., Hosztafi, S. & Timar, T.J. Agric. (1993). Preparation and Fungicidal Activity of 5-Substituted Hydantoins and Their 2-Thio Analogs. Food Chem., 41, 148–152. DOI: 10.1021/jf00025a031. Search in Google Scholar

18. El-Barbary, A.A., Khodair, A.I., Pedersen, E.B. & Nielsen, C.J. (1994). S-Glucosylated hydantoins as new antiviral agents. Med. Chem., 37, 73–77. DOI: 10.1021/jm00027a009. Search in Google Scholar

19. Tompkins, J.E. (1986). 5,5-Diaryl-2-thiohydantoins and 5,5-diaryl N3-substituted 2-thiohydantoins as potential hypolipidemic agents. J. Med. Chem., 29, 855–589. DOI: 10.1021/jm00155a042. Search in Google Scholar

20. Elwood, J.C., Richert, D.A. & Westerfeld, W.W. (1972). A comparison of hypolipidemic drugs in the prevention of an orotic acid fatty liver. Biochem. Pharmacol., 21, 1127–1132. DOI: 10.1016/0006-2952(72)90106-2. Search in Google Scholar

21. Marx, J.V., Richert, D.A. & Westerfeld, W.W. (1970). Peripheral inhibition of thyroxine by thiohydantoins derived from amino acids. J. Med. Chem. 1970, 13, 1179–1181. DOI: 10.1021/jm00300a036. Search in Google Scholar

22. Cheymol, J., Chabrier, P., Gay, Y. & Lavedan, J.P. (1951). [Inhibitory action on thyroid & molecular structure; 2. study of dithiocarbamates & their derivatives]. Arch. Int. Pharmacodyn. Ther. 1951, 88, 342–350. Search in Google Scholar

23. Cheymol, J., Chabrier, P. & Gay, Y., Arch. (1951). [Antithyroid action and molecular structure. I. A study of thiohydantoins and their methyl esters]. Int. Pharmacodyn. Ther. 1951, 87, 321–323. DOI: 10.1042/bj0490125. Search in Google Scholar

24. Archer, S., Unser, M.J. & Froelich, E. (1956). Some 5-(Oxoalkyl)-2-thiohydantoins and Their Derivatives. J. Am. Chem. Soc. 1956, 78, 6182. DOI: 10.1021/ja01604a064. Search in Google Scholar

25. Curran, A.C.W.U.S. Pat. 3,984,430, 1976. Search in Google Scholar

26. Nagpal, K.L.U.S. Pat. 4,473,393, 1984. Search in Google Scholar

27. Mo, B., Li, J. & Liang, S. (1997). A method for preparation of amino acid thiohydantoins from free amino acids activated by acetyl chloride for development of protein C-terminal sequencing. Anal. Biochem., 249(1), 207–211. DOI: 10.1006/abio.1997.2156. Search in Google Scholar

28. Cromwellt, L.D., Stark, G.R. (1969). Determination of the carboxyl termini of proteins with ammonium thiocyanate and acetic anhydride, with direct identification of the thiohydantoins. Biochemistry, 8, 4735–4740. DOI: 10.1021/bi00840a012,. Search in Google Scholar

29. Nelson, J.V., Helber, M.J. & Brick, M.C.U.S. Pat. 5,695,917, 1997. Search in Google Scholar

30. Ooi, T., Fukui, T., Kobayashi, M., Ueno, K., Kagami, K., Suzuki, M. & Nishino, K.U.S. Pat. 5,482,814, 1996. Search in Google Scholar

31. Kandil, S.S., El-Hefnawy, G.B. & Baker, E.A. (2004). Thermal and spectral studies of 5-(phenylazo)-2-thiohydantoin and 5-(2- hydroxyphenylazo)-2-thiohydantoin complexes of cobalt(II), nickel(II) and copper(II). Thermochim. Acta, 414, 105–113. DOI: 10.1016/j.tca.2003.11.021. Search in Google Scholar

32. Verma, S., Shrivastva, S. & Rani, P. (2012). Synthesis and spectroscopic studies of mixed ligand complexes of transition and inner transition metals with a substituted benzimidazole derivative and RNA bases. J. Chem. Pharm. Res., 2012, 4(1), 693–699. Search in Google Scholar

33. Usharani, M., Akila, E. & Rajavel, R. (2012). Mixed ligand Schiff base complexes: synthesis, spectral characterization and antimicrobial activity. J. Chem. Pharm. Res., 2012, 4(1), 726–731. Search in Google Scholar

34. Andrade, A., Namora, S.F. & Woisky, RG., (2000). Synthesis and characterization of a diruthenium–ibuprofenato complex: Comparing its anti-inflammatory activity with that of a copper(II)–ibuprofenato complex. J. Inorg. Biochem., 81, 23–27. DOI: 10.1016/S0162-0134(00)00106-9. Search in Google Scholar

35. Ray, S.M. & Lahiri, S.C. (1990). Some reflections on “Future organizational trends of the ASA. J. Indian Chem. Soc., 67, 324–326. DOI: 10.1007/BF02691840. Search in Google Scholar

36. Mathew, M., Palenik, G.J. & Clark, G.R. (1973). Crystal and molecular structures of chlorobis(acetone thiosemicarba-zone)nickel(II) chloride monohydrate and nitratobis(acetone thiosemicarbazone)nickel(II) nitrate monohydrate. Inorg. Chem., 12(2), 446–451. DOI: 10.1021/ic50120a041. Search in Google Scholar

37. Arya, P., Singh, N., Gadi, R. & Chandra, S. (2010). Preparation, characterization and antiulcer activity of mixed ligand complex of Zn (II) with Famotidine and Glycine. J. Chem. Pharm. Res., 2(6), 253–257. Search in Google Scholar

38. Hughes, M.N., Wilkinson, G., Gillard, R.D. & McCleverty, J.A. Comprehensive Coordination Chemistry, Vol 6, Pergamon Press, Oxford, 1987. Search in Google Scholar

39. Raman, M., Muthuraj, P.V., Ravichandran, S. & Kulandaisamy, A., (2003). Synthesis, characterisation and electrochemical behaviour of Cu(II), Co(II), Ni(II) and Zn(II) complexes derived from acetylacetone andp-anisidine and their antimicrobial activity. Acad. Sci (Chem. Sci.), 2003, 115(3), 161–167. https://www.ias.ac.in/article/fulltext/jcsc/115/03/0161-0167. Search in Google Scholar

40. Bauer, A.W., Kirby, W.M., Sherris, C. & Turck, M. (1966). Antibiotic Susceptibility Testing by a Standardized Single Disk Method. Amer. J. Clinical Pathology., 45, 493. DOI: 10.1093/ajcp/45.4_ts.493. Search in Google Scholar

41. Pfaller, M.A., Burmeister, L., Bartlett, M.A. & Rinaldi, M.G., (1988). Multicenter evaluation of four methods of yeast inoculum preparation. J. Clin. Microbiol. 26 (1988) 1437–1441. Search in Google Scholar

42. National Committee for Clinical Laboratory Standards, Performance Vol. antimicrobial susceptibility of Flavobacteria, 1997. Search in Google Scholar

43. National Committee for Clinical Laboratory Standards. 1993. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard M7-A3. National Committee for Clinical Laboratory Standards, Villanova, Pa. Search in Google Scholar

44. NakamotoK, Infra-Red Spectra of Inorganic and Coordinated Compounds, John Wiley, New York (1963) p. 167. Search in Google Scholar

45. Randall, H.M., Fowler, R.G., Fuson, N. & Dangl, J.R. Infrared Determination of Organic Structures. D. Van Nostrand, New York (1949). Search in Google Scholar

46. Lever, A.B.P., Inorganic Electronic Spectroscopy, Elsevier, Amsterdam, 1968. Search in Google Scholar

47. Lever, A.B.P. & Mantovani, E. (1971). Far-infrared and electronic spectra of some bis(ethylenediamine) and related complexes of copper(II) and the relevance of these data to tetragonal distortion and bond strengths. Inorg. Chem., 1971, 10, 817–826. DOI: 10.1021/ic50098a031. Search in Google Scholar

48. Drago., R.S., Physical Methods in Inorganic Chemistry, Rein Hold Publishing Corporation, New York (1976) p. 395. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo