1. bookVolume 23 (2021): Issue 3 (September 2021)
Journal Details
License
Format
Journal
First Published
03 Jul 2007
Publication timeframe
4 times per year
Languages
English
access type Open Access

The influence of sulfur addition on the hazard-type reaction of ilmenite ores with sulfuric acid

Published Online: 14 Oct 2021
Page range: 17 - 23
Journal Details
License
Format
Journal
First Published
03 Jul 2007
Publication timeframe
4 times per year
Languages
English
Abstract

The paper presents results of thermokinetic investigation of the hazard-type reaction of Norwegian and Australian ilmenite ores with sulfuric acid, modified by the addition of elemental sulfur, to increase the process safety in industrial conditions. In the reactions of both ilmenite ores the addition of sulfur caused a reduction of the thermal power generated in the reaction and a decrease in the value of the thermokinetic parameter ΔTmax/Δτ for almost the whole range of initial concentrations of sulfuric acid. It was also found that the addition of sulfur to the reaction did not negatively affect the degree of ilmenite leaching. The interpretation of the obtained thermokinetic curves allowed to determine safe process conditions for both types of titanium raw materials.

Keywords

1. Johnson, R.W., Audy, S.W. & Unwin, S.D. (2003). Essential Practices for Managing Chemical Reactivity Hazards. New York: AIChE. Search in Google Scholar

2. Bretherick’s Handbook of Reactive Chemical Hazards (P.G. Urben, Ed.). Amsterdam: Academic Press, 2006. Search in Google Scholar

3. OSHA. (2016). Hazard Communication. Hazard Classification Guidance for Manufacturers, Importers, and Employers. Search in Google Scholar

4. Gustin, J.L. (2002). How the study of accident case histories can prevent runaway reaction accidents from recurring. Proc. Safety Environ. Protec., 80, 16–24. DOI: 10.1205/095758202753502370. Search in Google Scholar

5. Fujita, M., Izato, Y., Iizuka, Y. & Miyake, A. (2019). Thermal hazard evaluation of runaway polymerization of acrylic acid. Proc. Safety Environ. Protec., 129, 339–347. DOI: 10.1016/j.psep.2019.08.003. Search in Google Scholar

6. Casson, V., Lister, D.G., Milazzo, M.F. & Maschio, G. (2012). Comparison of criteria for predi ction of ru naway reactions in the sulphuric acid catalyzed esterification of acetic anhydride and methanol. J. Loss Prev. Proc. Ind., 25, 209–217. DOI: 10.1016/j.jlp.2011.09.002. Search in Google Scholar

7. Ni, L., Mebarki, A., Jiang, J., Zhang, M., Pensee, V. & Dou, Z. (2016). Thermal risk in batch reactors: Theoretical framework for runaway and accident. J. Loss Prev. Proc. Ind., 43, 75–82. DOI: 10.1016/j.jlp.2016.04.004. Search in Google Scholar

8. Sasikumar, C., Rao, D.S., Srikanth, S., Ravikumar, B., Mukhopadhyay, N.K. & Mehrotra, S.P. (2004). Effect of mechanical activation on the kinetics of sulfuric leaching of beach sand ilmenite from Orissa, India. Hydrometallurgy, 75, 189–204. DOI: 10.1016%2Fj.hydromet.2004.08.001. Search in Google Scholar

9. Liang, B., Li, C., Zhang, C. & Zhang, Y. (2005). Leaching kinetics of Panzhihua ilmenite in sulfuric acid. Hydrometallurgy, 76, 173–179. DOI: 10.1016%2Fj.hydromet.2004.10.006. Search in Google Scholar

10. Li, C., Liang, B., Guo, L. & Wu, Z. (2006). Effect of mechanical activation on the dissolution of Panzhihua ilmenite. Minerals Engineering, 19(14), 1430–1438. DOI: 10.1016/j.mineng.2006.02.005. Search in Google Scholar

11. Greenwood, N.N. & Earnshaw, A. (1994). Chemistry of the elements. New York: Pergamon Press. Search in Google Scholar

12. Winkler, J. (2003). Titanium Dioxide, Hannover: Vincentz Network. Search in Google Scholar

13. Middlemas, S., Fang, Zak, Z. & Fan, P. (2013). A new method for production of titanium dioxide pigment. Hydrometallurgy, 131–132, 107–113. DOI: 10.1016/j.hydromet.2012.11.002. Search in Google Scholar

14. Gázquez, M.J., Bolívar, J.P., García-Tenorio, R. & Vaca, F. (2009). Physicochemical characterization of raw materials and co-products from the titanium dioxide industry. J. Hazard. Mat., 166, 1429–1440. DOI: 10.1016/j.jhazmat.2008.12.067. Search in Google Scholar

15. Zhang, W., Zhu, Z. & Yong, Cheng, A. (2011). A literature review of titanium metallurgical processes. Hydrometallurgy, 108, 177–188. DOI: 10.1016/j.hydromet.2011.04.005. Search in Google Scholar

16. Mantero, J., Gázquez, M.J., Bolívar, J.P., García-Tenorio, R. & Vaca, F. (2013). Radioactive characterization of the main materials involved in the titanium dioxide production process and their environmental radiological impact. J. Environ. Radioactivity, 120, 26–32. DOI: 10.1016/j.jenvrad.2013.01.002. Search in Google Scholar

17. Dubenko, A.V., Nikolenko, M.V., Kostyniuk, A. & Likozar, B. (2020). Sulfuric Acid Leaching of Altered Ilmenite Using Thermal, Mechanical and Chemical Activation. Minerals, 10(6), 538. DOI: 10.3390/min10060538. Search in Google Scholar

18. Dubenko, A.V., Nikolenko, M.V., Kostyniuk, A. & Likozar, B. (2020). Mechanism, Thermodynamics and Kinetics of Rutile Leaching Process by Sulfuric Acid Reactions. Processes, 8(6), 640. DOI: 10.3390/pr8060640. Search in Google Scholar

19. Moreno, V.C., Kanes, R., Wilday, J. & Vechot, L. (2015). Modeling of the venting of an untempered system under runaway conditions. J. Loss Prev. Process Ind., 36, 171–182. DOI: 10.1016%2Fj.jlp.2015.04.016. Search in Google Scholar

20. Lin, C.P., Li, J.S., Tseng, J.M. & Mannan, M.S. (2016). Thermal runaway reaction for highly exothermic material in safe storage temperature. J. Loss Prev. Proc. Ind. 40, 259–265. DOI: 10.1016/j.jlp.2016.01.006. Search in Google Scholar

21. Parapari, P.S., Irannajad, M. & Mehdilo, A. (2016). Modification of ilmenite surface properties by superficial dissolution method. Miner. Engin., 92, 160–167. DOI: 10.1016%2Fj.mineng.2016.03.016. Search in Google Scholar

22. Welham, N.J. & Llewellyn, D.J. (1998). Mechanical enhancement of the dissolution of ilmenite. Minerals Engineering, 11, 827–841. DOI: 10.1016/S0892-6875(98)00070-3. Search in Google Scholar

23. Yu, J., Chen, L. & Peng J. (2012). Thermal hazard research smokeless fireworks. J. Thermal Anal. Calorimetry, 109, 1151–1156. DOI: 10.1007/s10973-012-2367-6. Search in Google Scholar

24. El-Sladek, M.H., Ahmed, H.M., El-Barawy, K., Morsi, M.B., El-Didamony, H. & Bjorkman, B. (2018). Non-isothermal carbothermic reduction kinetics of mechanically activated ilmenite containing self-reducing mixtures. J. Thermal Anal. Calorimetry, 131, 2457–2465. DOI: 10.1007/s10973-017-6743-0. Search in Google Scholar

25. Zheng, F., Guo, Y., Duan, W., Liu, S., Qiu, G., Chen, F., Jiang, T. & Wang, S. (2018). Transformation of Ti-bearing mineral in Panzhinua electric furnace titanium slag during oxidation roasting process. J. Thermal Anal. Calorimetry, 131, 1767–1776. DOI: 10.1007/s10973-017-6675-8. Search in Google Scholar

26. Jablonski, M., Lawniczak-Jablonska, K. & Klepka, M.T. (2012). Investigation of phase composition of ilmenites and influence of this parameter on thermokinetics of reaction with sulfuric acid. J. Thermal Anal. Calorimetry, 109, 1379–1385. DOI: 10.1007/s10973-011-2136-y. Search in Google Scholar

27. Jablonski, M. & Tylutka, S. (2016). The influence of initial concentration of sulfuric acid on the degree of leaching of the main elements of ilmenite raw materials. J. Thermal Anal. Calorimetry, 124, 355–361. DOI: 10.1007/s10973-015-5114-y. Search in Google Scholar

28. Jablonski, M. & Przepiera, A. (2001). Kinetic model for the reaction of ilmenite with sulfuric acid. J. Thermal Anal. Calorimetry, 65, 583–590. DOI: 10.1023/A:1012405826498. Search in Google Scholar

29. Coddell, M. (1959). Analytical chemistry of titanium metals and compounds. New York, Intersciences Publishers Inc. Search in Google Scholar

30. Barin, I. & Knacke, O. (1973). Thermochemical properties of inorganic substances. Springer-Verlag, Berlin. Search in Google Scholar

31. Jablonski, M. (2009). Influence of particle size distribution on thermokinetics of ilmenite with sulfuric acid reaction. J. Thermal Anal. Calorimetry, 96, 971–977. DOI: 10.1007/s10973-009-0048-x. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo