1. bookVolume 23 (2021): Issue 3 (September 2021)
Journal Details
License
Format
Journal
First Published
03 Jul 2007
Publication timeframe
4 times per year
Languages
English
access type Open Access

Nickel catalyst in coupled plasma-catalytic system for tar removal

Published Online: 14 Oct 2021
Page range: 24 - 29
Journal Details
License
Format
Journal
First Published
03 Jul 2007
Publication timeframe
4 times per year
Languages
English
Abstract

Tar formation is a significant issue during biomass gasification. Catalytic removal of tars with the use of nickel catalyst allows to obtain high conversion rate but coke formation on catalysts surface lead to its deactivation. Toluene decomposition as a tar imitator was studied in gliding discharge plasma-catalytic system with the use of 5%, 10% and 15% by weight Ni and NiO catalyst on Al2O3 (α-Al2O3) and Peshiney (γ-Al2O3) carrier in gas composition similar to the gas after biomass pyrolysis. The optimal concentration of nickel was identified to be 10% by weight on Al2O3. It was stable in all studied initial toluene concentrations, discharge power while C7H8 conversion rate remained high – up to 82%. During the process, nickel catalysts were deactivated by sooth formation on the surface. On catalysts surface, toluene decomposition products were identified including benzyl alcohol and 3-hexen-2-one.

Keywords

1. Wang, Z., Bui, Q., Zhang, B. & Pham, T.L.H. (2020). Biomass energy production and its impacts on the ecological footprint: An investigation of the G7 countries. Sci. Total Environ. 743, 140741. DOI: 10.1016/j.scitotenv.2020.140741. Search in Google Scholar

2. Shahabuddin, M., Alam, M.T., Krishna, B.B., Bhaskar, T. & Perkins, G. (2020). A review on the production of renewable aviation fuels from the gasification of biomass and residual wastes. Biores. Technol. 312, 123596. DOI: 10.1016/j.biortech.2020.123596. Search in Google Scholar

3. Xiang, Y., Cai, L., Guan, Y., Liu, W., Cheng, Z. & Liu, Z. (2020). Study on the effect of gasification agents on the integrated system of biomass gasification combined cycle and oxy-fuel combustion. Energy. 206, 118131. DOI: 10.1016/j.energy.2020.118131. Search in Google Scholar

4. Marculescu, C., Cenuşă, V. & Alexe, F. (2016). Analysis of biomass and waste gasification lean syngases combustion for power generation using spark ignition engines. Waste Manage. 47(A), 133–140. DOI: 10.1016/j.wasman.2015.06.043. Search in Google Scholar

5. Hernández, J.J., Lapuerta, M. & Barba, J. (2015). Effect of partial replacement of diesel or biodiesel with gas from biomass gasification in a diesel engine. Energy. 89, 148–157. DOI: 10.1016/j.energy.2015.07.050. Search in Google Scholar

6. Caliandro, P., Tock, L., Ensinas, A.V. & Marechal, F. (2014). Thermo-economic optimization of a Solid Oxide Fuel Cell – Gas turbine system fuelled with gasified lignocellulosic biomass. Energy Convers. Manag. 85, 764–773. DOI: 10.1016/j.enconman.2014.02.009. Search in Google Scholar

7. Di Carlo, A., Borello, D., Sisinni, M., Savuto, E., Venturini, P., Bocci, E. & Kuramoto, K. (2015). Reforming of tar contained in a raw fuel gas from biomass gasification using nickel-mayenite catalyst. Int. J. Hydrog. Energy. 40(30), 9088–9095. DOI: 10.1016/j.ijhydene.2015.05.128. Search in Google Scholar

8. Kinoshita, C.M., Wang, Y. & Zhou, J. (1994). Tar formation under different biomass gasification conditions. J. Anal. Appl. Pyrolysis, 29(2), 169–181. DOI: 10.1016/0165-2370(94)00796-9. Search in Google Scholar

9. Thapa, S., Bho, P.R., Kumar, A. & Huhnke, R.L. (2017). Effects of Syngas Cooling and Biomass Filter Medium on Tar Removal. Energies. 10(3), 349. DOI: 10.3390/en10030349. Search in Google Scholar

10. Asadullah, M. (2014). Biomass gasification gas cleaning for downstream applications: A comparative critical review, Renew. Sust. Energ. Rev. 40, 118–132. DOI: 10.1016/j.rser.2014.07.132. Search in Google Scholar

11. Shen, Y. & Yoshikawa, K. (2013). Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis—A review. Renew. Sust. Energ. Rev. 21, 371–392. DOI: 10.1016/j.rser.2012.12.062. Search in Google Scholar

12. Yu, H., Liu, Y., Liu, J. & Chen, D. (2019). High catalytic performance of an innovative Ni/magnesium slag catalyst for the syngas production and tar removal from biomass pyrolysis. Fuel. 254, 115622. DOI: 10.1016/j.fuel.2019.115622. Search in Google Scholar

13. Laprune, D., Farrusseng, D., Schuurman, Y., Meunier, F.C., Pieterse, J.A.Z., Steele, A.M. & Thorpe, S. (2018). Effects of H2S and phenanthrene on the activity of Ni and Rh-based catalysts for the reforming of a simulated biomass-derived producer gas. Appl. Catal. B. 221, 206–214. DOI: 10.1016/j.apcatb.2017.09.015. Search in Google Scholar

14. Liu, Y., Song, J., Diao, X., Liu, L. & Sun, Y. (2020). Removal of tar derived from biomass gasification via synergy of non-thermal plasma and catalysis. Sci. Total Environ. 721, 137671. DOI: 10.1016/j.scitotenv.2020.137671. Search in Google Scholar

15. Wanga, Y., Yangb, H. & Tu, X. (2019). Plasma reforming of naphthalene as a tar model compound of biomass gasification. Energy Convers. Manag. 187, 593–604. DOI: 10.1016/j.enconman.2019.02.075. Search in Google Scholar

16. Liu, L., Liu, Y., Song, J., Ahmad, S., Liang, J. & Sun, Y. (2019). Plasma-enhanced steam reforming of different model tar compounds over Ni-based fusion catalysts. J. Hazard. Mater. 377, 24–33. DOI: 10.1016/j.jhazmat.2019.05.019. Search in Google Scholar

17. Tao, K., Ohta, N., Liu, G., Yoneyama, Y., Wang, T. & Tsubaki, N. (2013). Plasma enhanced catalytic reforming of biomass tar model compound to syngas. Fuel. 104, 53–57. DOI: 10.1016/j.fuel.2010.05.044. Search in Google Scholar

18. Liu, L., Wang, Q., Ahmad, S., Yang, X., Ji, M. & Sun, Y. (2018). Steam reforming of toluene as model biomass tar to H2-rich syngas in a DBD plasma-catalytic system. J. Energy Inst. 91(6), 927–939. DOI: 10.1016/j.joei.2017.09.003. Search in Google Scholar

19. Młotek, M., Woroszył, J., Ulejczyk, B. & Krawczyk, K. (2019). Coupled Plasma-Catalytic System with Rang 19PR Catalyst for Conversion of Tar. Sci. Rep. 9, 13562. DOI: 10.1038/s41598-019-49959-4. Search in Google Scholar

20. Młotek, M., Ulejczyk, B., Woroszył, J. & Krawczyk, K. (2020). Decomposition of Toluene in Coupled Plasma-Catalytic System. Ind. Eng. Chem. Res. 59(10), 4239–4244. DOI: 10.1021/acs.iecr.9b04330. Search in Google Scholar

21. Lu, P., Huang, Q., Bourtsalas, A.C., Chi1, Y. & Yan, J. (2019). Effect of Operating Conditions on the Coke Formation and Nickel Catalyst Performance During Cracking of Tar. Waste Biomass Valorization. 10, 155–165. DOI: 10.1007/s12649-017-0044-5. Search in Google Scholar

22. Młotek, M., Reda, E. & Krawczyk, K. (2015). Conversion of tetrachloromethane in large scale gliding discharge reactor. Open Chem. 13, 212–217. DOI: 10.1515/chem-2015-0022. Search in Google Scholar

23. Yan, K. & Van Heesch, E.J.M. (2001). From Chemical Kinetics to Streamer Corona Reactor and Voltage Pulse Generator. Plasma Chem. Plasma Process. 21(1), 107–137. DOI: 10.1023/A:1007045529652. Search in Google Scholar

24. Młotek, M., Ulejczyk, B., Woroszył, J., Walerczak, I. & Krawczyk, K. (2017). Purification of the gas after pyrolysis in coupled plasma-catalytic system. Pol. J. Chem. Technol. 19(4), 94–98. DOI: 10.1515/pjct-2017-0073. Search in Google Scholar

25. Nunez, C.M., Ramsey, G.H., Ponder, W.H., Abbott, J.H., Hamel, L.E. & Kariher, P.H. (1993). Corona Destruction: An Innovative Control Technology for VOCs and Air Toxics. J. Air Waste Manag. Assoc. 43(2), 242–247. DOI: 10.1080/1073161X.1993.10467131. Search in Google Scholar

26. Xua, W., Jianga, X., Chena, H., Chena, X., Chenb, L., Wub, J., Fub, M. & Yeb, D. (2020). Adsorption-discharge plasma system for toluene decomposition over Ni-SBA catalyst: In situ observation and humidity influence study. Chem. Eng. 382, 122950. DOI: 10.1016/j.cej.2019.122950. Search in Google Scholar

27. Du, C.M., Yan, J.H. & Cheron, B. (2007). Decomposition of toluene in a gliding arc discharge plasma reactor. Plasma Sources Sci. Technol. 16, 791–797. DOI: 10.1088/0963-0252/16/4/014. Search in Google Scholar

28. Lee, H. & Kim, D.H. (2018). Direct methanol synthesis from methane in a plasma-catalyst hybrid system at low temperature using metal oxide-coated glass beads. Sci. Rep. 8, 9956. DOI: 10.1038/s41598-018-28170-x. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo