1. bookVolume 29 (2022): Issue 1 (March 2022)
Journal Details
License
Format
Journal
eISSN
2082-8799
First Published
16 May 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Comparison of Leg Muscle Activity During Level and Uphill Walking in Individuals with Flat Foot and Normal Foot: A Cross-Sectional Study

Published Online: 17 Mar 2022
Volume & Issue: Volume 29 (2022) - Issue 1 (March 2022)
Page range: 14 - 19
Received: 23 Aug 2021
Accepted: 20 Jan 2022
Journal Details
License
Format
Journal
eISSN
2082-8799
First Published
16 May 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Introduction. Arches of the foot play a significant role in lower limb function and impairments in the arches are correlated to increased injury risk. The aim of this study was to identify the difference in muscles activity in individuals with a flat foot as compared to those with normal foot arch using surface electromyography (sEMG) while walking on at different speeds and gradients (slope of the treadmill). Material and Methods. Sixty healthy subjects were recruited by convenience sampling method and equally divided into two groups: short arch group (n = 30) and normal arch group (n = 30) by measuring arch height. All the subjects were made to walk on a treadmill at varying speeds (2.7, 4.5, and 6.3 km/h) and gradients (0%, 3%, 6% and 9%). The sEMG activity was recorded for medial gastrocnemius (GM) muscle and peroneus longus (PL) muscle while walking on the treadmill. Results. 2 x 3 x 4 split-plot ANOVA revealed a significant group effect for GM activity (p < 0.001), whereas PL activity was not able to show a significant group effect (p = 0.109). Increasing speeds led to a significant difference in the sEMG activity of PL and GM muscles (p < 0.001) in the two groups. Increasing gradient of treadmill also showed a significant difference in the sEMG activity in the two groups for PL and GM muscle (p < 0.05). Conclusions. The findings of this study demonstrated that subjects with flat feet had a lesser activation in PL muscles as compared to subjects with normal foot curvature. Therefore, it is necessary to incorporate strategies to improve the strength of these muscles to improve the arches of the foot.

Keywords

1. Kuo A.D., Donelan J.M. (2010). Dynamic principles of gait and their clinical implications. Physical Therapy 90(2), 157-174. DOI: 10.2522/ptj.2009012510.2522/ptj.20090125281602820023002 Search in Google Scholar

2. Wang W., Crompton R. (2004). Analysis of the human and ape foot during bipedal standing with implications for the evolution of the foot. Journal of Biomechanics 37(12), 1831-1836. DOI: 10.1016/j.jbiomech.2004.02.03610.1016/j.jbiomech.2004.02.03615519591 Search in Google Scholar

3. Redmond A.C., Crane Y.Z., Menz H.B. (2008). Normative values for the foot posture index. Journal of Foot and Ankle Research 1(1), 1-9. DOI: 10.1186/1757-1146-1-610.1186/1757-1146-1-6255377818822155 Search in Google Scholar

4. Uden H., Scharfbillig R., Causby R. (2017). The typically developing paediatric foot: How flat should it be? A systematic review. Journal of Foot and Ankle Research 10(1), 1-17. DOI: 10.1186/s13047-017-0218-110.1186/s13047-017-0218-1555823328814975 Search in Google Scholar

5. Farris D.J., Kelly L.A., Cresswell A.G., Lichtwark G.A. (2019). The functional importance of human foot muscles for bipedal locomotion. Proceedings of the National Academy of Sciences 116(5), 1645-1650. DOI: 10.1073/pnas.181282011610.1073/pnas.1812820116635869230655349 Search in Google Scholar

6. Grigoriadis G., Carpanen D., Webster C.E., Ramasamy A., Newell N., Masouros S.D. (2019). Lower limb posture affects the mechanism of injury in under-body blast. Annals of Biomedical Engineering 47(1), 306-316. DOI: 10.1007/s10439-018-02138-410.1007/s10439-018-02138-4631501630276492 Search in Google Scholar

7. Wang Y.T., Chen J.C., Lin Y.S. (2020). Effects of artificial texture insoles and foot arches on improving arch collapse in flat feet. Sensors 20(13), 3667. DOI: 10.3390/s2013366710.3390/s20133667737450832629994 Search in Google Scholar

8. Borges C.D.S., Fernandes L.F.R.M., Bertoncello D. (2013). Relationship between lumbar changes and modifications in the plantar arch in women with low back pain. Acta Ortopedica Brasileira 21(3), 135-138. DOI: 10.1590/S1413-7852201300030000110.1590/S1413-78522013000300001386199524453656 Search in Google Scholar

9. Menz H.B., Dufour A.B., Riskowski J.L., Hillstrom H J., Hannan M.T. (2013). Foot posture, foot function and low back pain: The Framingham Foot Study. Rheumatology 52(12), 2275-2282. DOI: 10.1093/rheumatology/ket29810.1093/rheumatology/ket298382851324049103 Search in Google Scholar

10. Woźniacka R., Oleksy Ł., Jankowicz-Szymańska A., Mika A., Kielnar R., Stolarczyk A. (2019). The association between high-arched feet, plantar pressure distribution and body posture in young women. Scientific Reports 9(1), 1-9. DOI: 10.1038/s41598-019-53459-w10.1038/s41598-019-53459-w686812531748559 Search in Google Scholar

11. Chang H.W., Lin C.J., Kuo L.C., Tsai M.J., Chieh H.F., Su F.C. (2012). Three-dimensional measurement of foot arch in preschool children. Biomedical Engineering Online 11(1), 1-13. DOI: 10.1186/1475-925X-11-7610.1186/1475-925X-11-76352396723009315 Search in Google Scholar

12. Gottschall J.S., Nichols T.R. (2011). Neuromuscular strategies for the transitions between level and hill surfaces during walking. Philosophical Transactions of the Royal Society B: Biological Sciences 366(1570), 1565-1579. DOI: 10.1098/rstb.2010.035510.1098/rstb.2010.0355313045221502127 Search in Google Scholar

13. Nuckols R.W., Takahashi K.Z., Farris D.J., Mizrachi S., Riemer R., Sawicki G.S. (2020). Mechanics of walking and running up and downhill: A joint-level perspective to guide design of lower-limb exoskeletons. PLoS One 15(8), e0231996. DOI:10.1371/journal.pone.023199610.1371/journal.pone.0231996745494332857774 Search in Google Scholar

14. Ho I.J., Hou Y.Y., Yang C.H., Wu W.L., Chen S.K., Guo L.Y. (2010). Comparison of plantar pressure distribution between different speed and incline during treadmill jogging. Journal of Sports Science & Medicine 9(1), 154. Search in Google Scholar

15. Telhan G., Franz J.R., Dicharry J., Wilder R.P., Riley P.O., Kerrigan D.C. (2010). Lower limb joint kinetics during moderately sloped running. Journal of Athletic Training 45(1), 16-21. DOI: 10.4085/1062-6050-45.1.1610.4085/1062-6050-45.1.16280874920064043 Search in Google Scholar

16. Kim M.K., Lee Y.S. (2013). Kinematic analysis of the lower extremities of subjects with flat feet at different gait speeds. Journal of Physical Therapy Science 25(5), 531-533. DOI: 10.1589/jpts.25.53110.1589/jpts.25.531380496824259795 Search in Google Scholar

17. Halabchi F., Mazaheri R., Mirshahi M., Abbasian L. (2013). Pediatric flexible flatfoot; clinical aspects and algorithmic approach. Iranian Journal of Pediatrics 23(3), 247. Search in Google Scholar

18. Yuill E.A., MacIntyre I.G. (2010). Posterior tibialis tendonopathy in an adolescent soccer player: A case report. The Journal of the Canadian Chiropractic Association 54(4), 293. Search in Google Scholar

19. Stålberg E., van Dijk H., Falck B., Kimura J., Neuwirth C. et al. (2019). Standards for quantification of EMG and neurography. Clinical Neurophysiology 130(9), 1688-1729. DOI: 10.1016/j.clinph.2019.05.00810.1016/j.clinph.2019.05.00831213353 Search in Google Scholar

20. Ivanenko Y.P., Poppele R.E., Lacquaniti F. (2004). Five basic muscle activation patterns account for muscle activity during human locomotion. The Journal of Physiology 556(1), 267-282. DOI: 10.1113/jphysiol.2003.05717410.1113/jphysiol.2003.057174166489714724214 Search in Google Scholar

21. Kibushi B., Hagio S., Moritani T., Kouzaki M. (2018). Speed-dependent modulation of muscle activity based on muscle synergies during treadmill walking. Frontiers in Human Neuroscience 12(4). DOI: 10.3389/fnhum.2018.0000410.3389/fnhum.2018.00004578757229416507 Search in Google Scholar

22. Raffalt P.C., Guul M.K., Nielsen A., Puthusserypady S., Alkjaer T. (2017). Economy, movement dynamics, and muscle activity of human walking at different speeds. Scientific Reports 7(1), 1-14. DOI: 10.1038/srep4398610.1038/srep43986534106428272484 Search in Google Scholar

23. Murley G.S., Menz H.B., Landorf K.B. (2009). A protocol for classifying normal- and flat-arched foot posture for research studies using clinical and radiographic measurements. Journal of Foot and Ankle Research 2(1), 22. DOI: 10.1186/1757-1146-2-2210.1186/1757-1146-2-22358324319575811 Search in Google Scholar

24. Criswell E. (2010). Cram’s introduction to surface electro-myography. Jones & Bartlett Publishers. Search in Google Scholar

25. Kaur N., Bhanot K., Brody L.T., Bridges J., Berry D.C., Ode J.J. (2014). Effects of lower extremity and trunk muscles recruitment on serratus anterior muscle activation in healthy male adults. International Journal of Sports Physical Therapy 9(7), 924. DOI: 10.1113/JP27725010.1113/JP277250 Search in Google Scholar

26. Gupta A., Mudie K.L., Clothier P.J. (2014). The reliability of determining the onset of medial gastrocnemius muscle activity during a stretch-shorten-cycle action. Journal of Electromyography and Kinesiology 24(5), 588-592. DOI: 10.1016/j.jelekin.2014.05.00510.1016/j.jelekin.2014.05.005 Search in Google Scholar

27. Reeves J., Jones R., Liu A., Bent L., Nester C. (2019). The between-day reliability of peroneus longus EMG during walking. Journal of Biomechanics 86, 243-246. DOI: 10.1016/j.jbiomech.2019.01.03710.1016/j.jbiomech.2019.01.037 Search in Google Scholar

28. Del Vecchio A., Casolo A., Negro F., Scorcelletti M., Bazzucchi I. et al. (2019). The increase in muscle force after 4 weeks of strength training is mediated by adaptations in motor unit recruitment and rate coding. The Journal of Physiology 597(7), 1873-1887. DOI: 10.1113/JP27725010.1113/JP277250 Search in Google Scholar

29. Wakeling J.M., Lee S.S., Arnold A.S., de Boef Miara M., Biewener A.A. (2012). A muscle’s force depends on the recruitment patterns of its fibers. Annals of Biomedical Engineering 40(8), 1708-1720. DOI: 10.1007/s10439-012-0531-610.1007/s10439-012-0531-6 Search in Google Scholar

30. Holt N.C., Azizi E. (2016). The effect of activation level on muscle function during locomotion: Are optimal lengths and velocities always used? Proceedings of the Royal Society B: Biological Sciences 283(1823), 20152832. DOI: 10.1098/rspb.2015.283210.1098/rspb.2015.2832 Search in Google Scholar

31. Franz J.R., Kram R. (2012). The effects of grade and speed on leg muscle activations during walking. Gait & Posture 35(1), 143-147. DOI: 10.1016/j.gaitpost.2011.08.02510.1016/j.gaitpost.2011.08.025 Search in Google Scholar

32. Patla A.E. (1986). Effects of walking on various inclines on EMG patterns of lower limb muscles in humans. Human Movement Science 5(4), 345-357. DOI: 10.1016/0167-9457(86)90013-810.1016/0167-9457(86)90013-8 Search in Google Scholar

33. Yokozawa T., Fujii N., Ae M. (2007). Muscle activities of the lower limb during level and uphill running. Journal of Biomechanics 40(15), 3467-3475. DOI: 10.1016/j.jbiomech.2007.05.02810.1016/j.jbiomech.2007.05.02817662990 Search in Google Scholar

34. Kyröläinen H., Avela J., Komi P.V. (2005). Changes in muscle activity with increasing running speed. Journal of Sports Sciences 23(10), 1101-1109. DOI: 10.1080/0264041040002157510.1080/0264041040002157516194986 Search in Google Scholar

35. Lee S.S.M., Piazza S.J. (2008). Inversion-eversion moment arms of gastrocnemius and tibialis anterior measured in vivo. Journal of Biomechanics 41(16), 3366-3370. DOI: 10.1016/j.jbiomech.2008.09.029.10.1016/j.jbiomech.2008.09.02919019375 Search in Google Scholar

36. Hunt A.E., Smith R.M. (2004). Mechanics and control of the flat versus normal foot during the stance phase of walking. Clinical Biomechanics 19(4), 391-397. DOI: 10.1016/j.clinbiomech.2003.12.01010.1016/j.clinbiomech.2003.12.01015109760 Search in Google Scholar

37. Murley G.S., Landorf K.B., Menz H.B., Bird A.R. (2009). Effect of foot posture, foot orthoses and footwear on lower limb muscle activity during walking and running: A systematic review. Gait & Posture 29(2), 172-187. DOI: 10.1016/j.gaitpost.2008.08.01510.1016/j.gaitpost.2008.08.01518922696 Search in Google Scholar

38. Morgan O., Song J., Hillstrom R., Sobel M., Hillstrom H.J. (2020). Biomechanics of the Peroneal Tendons. In: M. Sobel (ed.), The Peroneal Tendons (pp. 23-40). Springer. Search in Google Scholar

39. Zdolšek A., Strojnik V., Dolenec A. (2018). Peroneal muscle activity during different types of walking. Journal of Foot and Ankle Research 11(1), 1-9. DOI: 10.1186/s13047-018-0291-010.1186/s13047-018-0291-0612277830202446 Search in Google Scholar

40. Lay A.N., Hass C.J., Nichols T.R., Gregor R.J. (2007). The effects of sloped surfaces on locomotion: An electromyographic analysis. Journal of Biomechanics 40(6), 1276-1285. DOI: 10.1016/j.jbiomech.2006.05.02310.1016/j.jbiomech.2006.05.02316872616 Search in Google Scholar

41. Gavin J.P., Cooper M., Wainwright T.W. (2018). The effects of knee joint angle on neuromuscular activity during electrostimulation in healthy older adults. Journal of Rehabilitation and Assistive Technologies Engineering 5, 1-10. DOI: 10.1177/205566831877950610.1177/2055668318779506645306631191945 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo