1. bookVolume 29 (2022): Issue 1 (March 2022)
Journal Details
License
Format
Journal
eISSN
2082-8799
First Published
16 May 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Modulation of Bone Metabolism Markers Following Low-Repetition and Light-Load Power Training in Postmenopausal Women: A Randomized Controlled Trial

Published Online: 17 Mar 2022
Volume & Issue: Volume 29 (2022) - Issue 1 (March 2022)
Page range: 20 - 24
Received: 08 Jun 2021
Accepted: 08 Jan 2022
Journal Details
License
Format
Journal
eISSN
2082-8799
First Published
16 May 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Introduction. The study aimed to survey effects of 6 weeks of low-repetition and light-load power training on serum Osteocalcin, Parathormone and Sclerostin in sedentary postmenopausal women. Material and Methods. This randomized controlled trial was carried out in healthy and sedentary postmenopausal women. We recruited 24 volunteers aged 55 to 65 years. Participants were allocated into two groups: experimental and control. The experimental group performed 6-week low-repetition and light-load power training at a frequency of three sessions per week. The outcome measures included Osteocalcin, Parathormone, Sclerostin. Blood samples were drawn pre- and post-intervention while fasting. Data were analyzed using SPSS19, and multivariate ANCOVA and Bonferroni post hoc test were used. Results. After 6 weeks of low-repetition and light-load power training, Sclerostin decreased (p = 0.03), while Osteocalcin and Parathormone increased (p = 0.01) in the training group compared to the control group. Conclusions. It seems that low-repetition and light-load power training, by increasing Osteocalcin and Parathormone and reducing Sclerostin, can be effective in bone formation in postmenopausal women.

Keywords

1. Daly R.M. (2017). Exercise and nutritional approaches to prevent frail bones, falls and fractures: an update. Climacteric 20(2), 119-124. DOI: 10.1080/13697137.2017.128689010.1080/13697137.2017.128689028286988 Search in Google Scholar

2. Sözen T., Özışık L., Başaran N.C. (2017). An overview and management of osteoporosis. European Journal of Rheumatology 4(1), 46-56. DOI: 10.5152/eurjrheum.2016.04810.5152/eurjrheum.2016.048533588728293453 Search in Google Scholar

3. Garnero P., Delmas P.D. (1999). Biochemical markers of bone turnover: clinical usefulness in osteoporosis. Annales de Biologie Clinique 57(2), 137-48. PMID: 10210740. Search in Google Scholar

4. Nikel O., Poundarik A., Bailey S., Vashishth D. (2018). Structural role of osteocalcin and osteopontin in energy dissipation in bone. Journal of Biomechanics 80, 45-52. DOI: 10.1016/j.jbiomech.2018.08.01410.1016/j.jbiomech.2018.08.014618884230205977 Search in Google Scholar

5. Barry D.W., Kohrt W.M. (2007). Acute effects of 2 hours of moderate-intensity cycling on serum parathyroid hormone and calcium. Calcified Tissue International 80(6), 359-365. DOI: 10.1007/s00223-007-9028-y10.1007/s00223-007-9028-y17549534 Search in Google Scholar

6. Silva B.C., Bilezikian J.P. (2015). Parathyroid hormone: anabolic and catabolic actions on the skeleton. Current Opinion in Pharmacology 22, 41-50. DOI: 10.1016/j.coph.2015.03.00510.1016/j.coph.2015.03.005540708925854704 Search in Google Scholar

7. Gombos G.C., Bajsz V., Pék E., Schmidt B., Sio E. et al. (2016). Direct effects of physical training on markers of bone metabolism and serum sclerostin concentrations in older adults with low bone mass. BMC Musculoskelet Disorder 17, 254. DOI: 10.1186/s12891-016-1109-510.1186/s12891-016-1109-5489988827278385 Search in Google Scholar

8. Garnero P. (2014). New developments in biological markers of bone metabolism in osteoporosis. Bone 66, 46-55. DOI: 10.1016/j.bone.2014.05.01610.1016/j.bone.2014.05.01624909537 Search in Google Scholar

9. Gaudio A., Pennisi P., Bratengeier C. (2010). Increased sclerostin serum levels associated with bone formation and resorption markers in patients with immobilization-induced bone loss. The Journal of Clinical Endocrinology and Metabolism 95(5), 2248-2253. DOI: 10.1210/jc.2010-006710.1210/jc.2010-006720305005 Search in Google Scholar

10. Wen H.J., Huang T.H., Li T.L., Chong P.N., Ang B.S. (2017). Effects of short-term step aerobics exercise on bone metabolism and functional fitness in postmenopausal women with low bone mass. Osteoporosis International 28(2), 539-547. DOI: 10.1007/s00198-016-3759-410.1007/s00198-016-3759-427613719 Search in Google Scholar

11. Mohr M., Helge E.W., Petersen L.F. (2015). Effects of soccer vs swim training on bone formation in sedentary middle-aged women. European Journal of Applied Physiology 115(12), 2671-2679. DOI: 10.1007/s00421-015-3231-810.1007/s00421-015-3231-826255288 Search in Google Scholar

12. Janik M., Stuss M., Michalska-Kasiczak M., Jagier A., Sewerynek E. (2018). Effects of physical activity on sclerostin concentrations. Endokrynologia Polska 69(2), 142-149. DOI: 10.5603/EP.a2018.000810.5603/EP.a2018.000829465155 Search in Google Scholar

13. Nayoung A., Kijin K. (2016). Effects of 12-week exercise training on osteocalcin, high-sensitivity C-reactive protein concentrations, and insulin resistance in elderly females with osteoporosis. The Journal of Physical Therapy Science 28(8), 2227-2231. DOI: 10.1589/jpts.28.222710.1589/jpts.28.2227501156627630402 Search in Google Scholar

14. Alghadir A.H., Aly F.A., Gabr S.A. (2014). Effect of moderate aerobic training on bone metabolism indices among adult humans. Pakistan Journal of Medical Sciences 30(4), 840-844. DOI: 10.12669/pjms.304.462410.12669/pjms.304.4624412170925097528 Search in Google Scholar

15. Zilaei-Bouri S.H., Peeri M. (2015). The effect of exercise intensity on the response of some of adipocytokins and biochemical marker of bone in obese and overweight young female. Iranian Journal of Endocrinology and Metabolism 16(6), 426-32. Search in Google Scholar

16. de Paula Gomes C.A.F., Politti F., de Souza Bacelar Pereira C., da Silva A.C.B., Dibai-Filho A.V. et al. (2020). Exercise program combined with electrophysical modalities in subjects with knee osteoarthritis: a randomised, placebo-controlled clinical trial. BMC Musculoskelet Disorder 21, 258.10.1186/s12891-020-03293-3717173032312265 Search in Google Scholar

17. Hamaguchi K., Kurihara T., Fujimoto M., Iemitsu M., Sato K. et al. (2017). The effects of low-repetition and light-load power training on bone mineral density in postmenopausal women with sarcopenia: a pilot study. BMC Geriatrics 17, 102. DOI: 10.1186/s12877-017-0490-810.1186/s12877-017-0490-8541413428464798 Search in Google Scholar

18. Jackson A.S., Pollock M.L., Ward A. (1985). Generalized equations for predicting body density of women. Medicine & Science in Sports & Exercise 2(3), 175-81. PMID: 7402053. Search in Google Scholar

19. Bezerra L., Bottaro M., Reis V.M., Lima R.M., Soares S. et al. (2010). Effects of yoga on bone metabolism in postmenopausal women. Journal of Exercise Physiology Online 13(4), 58-65. Search in Google Scholar

20. Ardawi M.S.M., Rouzi A.A., Qari M.H. (2012). Physical activity in relation to serum sclerostin, insulin-like growth factor-1, and bone turnover markers in healthy premenopausal women: a cross-sectional and a longitudinal study. The Journal of Clinical Endocrinology & Metabolism 97(10), 3691-3699. DOI: 10.1210/jc.2011-336110.1210/jc.2011-336122865898 Search in Google Scholar

21. Wieczorek-Baranowska A., Nowak A., Pilaczyńska-Szcześniak L. (2012). Osteocalcin and glucose metabolism in postmenopausal women subjected to aerobic training program for 8 weeks. Metabolism 61(4), 542-5. DOI: 10.1016/j.metabol.2011.08.01110.1016/j.metabol.2011.08.01122000586 Search in Google Scholar

22. Huovinen V., Ivaska K.K., Kiviranta R. (2016). Bone mineral density is increased after a 16-week resistance training intervention in elderly women with decreased muscle strength. European Journal of Endocrinology 175(6), 571-582. DOI: 10.1530/EJE-16-052110.1530/EJE-16-052127634943 Search in Google Scholar

23. Ghorbanian B., Barani A. (2017). The relationship between serum osteocalcin and PTH concentrations with glycemic, lipid and adiposity parameters subsequent 10-weeks of aerobic training in women with Type2 Diabetes. Journal of Health Promotion Management 6(3), 20-26.10.21859/jhpm-07013 Search in Google Scholar

24. Lombardi G., Ziemann E., Banfi G., Sabrina Corbetta S. (2020). Physical activity-dependent regulation of parathyroid hormone and calcium-phosphorous metabolism. International Journal of Molecular Sciences 21(15), 5388. DOI: 10.3390/ijms21155388.10.3390/ijms21155388743283432751307 Search in Google Scholar

25. Clarke B.L., Drake M.T. (2013). Clinical utility of serum sclerostin measurements. Bonekey Reports 2, 361. DOI: 10.1038/bonekey.2013.9510.1038/bonekey.2013.95393610924578825 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo