1. bookVolume 27 (2019): Issue 3 (July 2019)
Journal Details
License
Format
Journal
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
access type Open Access

Vascular impact of quercetin administration in association with moderate exercise training in experimental type 1 diabetes

Published Online: 30 Jul 2019
Page range: 269 - 279
Received: 23 Dec 2018
Accepted: 23 May 2019
Journal Details
License
Format
Journal
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English

Hyperglycemia and oxidative stress have a major role in the pathogenesis of diabetic vascular complications. In this study, we investigated the efficacy of combining quercetin treatment with moderate exercise training in reversing diabetes-induced oxidative stress and ultrasound modifications in rat carotid arteries. The diabetic Wistar rats were divided into sedentary groups and trained groups. The trained animals went through a regular moderate exercise by swimming (5 weeks). Some non-diabetic and diabetic rats were daily treated with quercetin (30 mg/kg, for 5 weeks). At the end of the study, the imaging evaluation required to assess the effects of diabetes on carotid arteries was performed by micro-ultrasound (MU). The diabetic rats presented atherosclerotic plaques, with an increase in the echogenicity of the carotid artery wall, carotid intima-media thickness (CIMT), and carotid wall thickness, while the diabetic trained rats treated with quercetin presented normal values of these parameters. Malondialde-hyde (MDA) levels, superoxide dismutase (SOD) antioxidant enzyme activity, reduced glutathione (GSH) levels and the reduced (GSH) to oxidized (GSSG) glutathione ratio were determined in the carotid artery tissue. Diabetes caused elevated MDA levels and a decrease in SOD activity, GSH levels and GSH/GSSG ratio in the carotid artery tissue. Treating diabetic rats with quercetin combined with moderate exercise training reversed all these oxidative stress parameters. Our results show that this combination, quercetin and moderate exercise training, can be a good treatment strategy for the vascular complications of diabetes by attenuating hyperglycemia-mediated oxidative stress.

Keywords

1. Sena CM, Pereira AM, Seica R. Endothelial dysfunction- A major mediator of diabetic vascular disease. Biochim Biophys Acta. 2013 Dec;1832(12):2216-31. DOI: 10.1016/j.bbadis.2013.08.00610.1016/j.bbadis.2013.08.006Open DOISearch in Google Scholar

2. Sundaram B, Singhal K, Sandhir R. Anti-atherogenic effect of chromium picolinate in streptozotocin-induced experimental diabetes. J Diabetes. 2013 Mar;5(1):43-50. DOI: 10.1111/j.1753-0407.2012.00211.x10.1111/j.1753-0407.2012.00211.xOpen DOISearch in Google Scholar

3. Chis IC, Muresan A, Adrian O, Andras LN, Simona C. Protective effects of Quercetin and chronic moderate exercise (training) against oxidative stress in the liver tissue of streptozotocin-induced diabetic rats. Physiol Int. 2016 Mar;103(1):49-64. DOI: 10.1556/036.103.2016.1.510.1556/036.103.2016.1.5Open DOISearch in Google Scholar

4. Tiwari BK, Pandey KB, Abidi AB, Rizvi SI. Markers of Oxidative Stress during Diabetes Mellitus. J Biomark. 2013 Dec; 2013:378790. DOI:10.1155/378790. DOI: 10.1155/2013/37879010.1155/378790.DOI:10.1155/2013/378790Open DOISearch in Google Scholar

5. Szabo C. Role of nitrosative stress in the pathogenesis of diabetic vascular dysfunction. Br J Pharmacol. 2009 Mar;156(5):713-27. DOI: 10.1111/j.1476-5381.2008.00086.x10.1111/j.1476-5381.2008.00086.xOpen DOISearch in Google Scholar

6. Fowler MJ. Microvascular and Macrovascular Complications of Diabetes. Clin Diabetes 2008 Apr;26(2):77-82. DOI: 10.2337/diaclin.26.2.7710.2337/diaclin.26.2.77Open DOISearch in Google Scholar

7. Umeno A, Horie M, Murotomi K, Nakajima Y, Yoshida Y. Antioxidative and antidiabetic effects of natural polyphenols and isoflavones. Molecules. 2016 May;21(6):708. DOI:10.3390/21060708. DOI: 10.3390/molecules2106070810.3390/21060708.DOI:10.3390/21060708Open DOISearch in Google Scholar

8. Wajima D, Nakagawa I, Takamura Y, Aketa S, Yonezawa T, Nakase H. Carotid artery stenosis is exacerbated in spontaneously obese model rats with diabetes. J Atheroscler Thromb. 2014 Jul;21(12):1253-9. DOI: 10.5551/jat.2466110.5551/jat.24661Open DOISearch in Google Scholar

9. Boots AW, Haenen GR, Bast A. Health effects of quercetin: From antioxidant to nutraceutical. Eur J Pharmacol. 2008 May;585(2-3):325-37. DOI: 10.1016/j.ejphar.2008.03.00810.1016/j.ejphar.2008.03.008Open DOISearch in Google Scholar

10. Pashevin DA, Tumanovska LV, Dosenko VE, Nagibin VS, Gurianova VL, Moibenko AA. Antiatherogenic effect of quercetin is mediated by proteasome inhibition in the aorta and circulating leukocytes. Pharmacol Rep. 2011 Mar;63(4):1009-18. DOI: 10.1016/S1734-1140(11)70617-XSearch in Google Scholar

11. Larson AJ, Symons JD, Jalili T. Therapeutic potential of quercetin to decrease blood pressure: Review of efficacy and mechanisms. Adv Nutr. 2012 Jan;3(1):39-46. DOI: 10.3945/an.111.00127110.3945/.111.001271Open DOISearch in Google Scholar

12. Jeong SM, Kang MJ, Choi HN, Kim JH, Kim JI. Quercetin ameliorates hyperglycemia and dyslipidemia and improves antioxidant status in type 2 diabetic db/db mice. Nutr Res Pract. 2012 Jun;6(3):201-7. DOI: 10.4162/nrp.2012.6.3.20110.4162/nrp.2012.6.3.201Open DOISearch in Google Scholar

13. Kim JH, Kang MJ, Choi HN, Jeong SM, Lee YM, Kim JI. Quercetin attenuates fasting and postprandial hyperglycemia in animal models of diabetes mellitus. Nutr Res Pract 2011 Apr;52):107-11. DOI: 10.4162/nrp.2011.5.2.10710.4162/nrp.2011.5.2.107Open DOISearch in Google Scholar

14. Chis IC, Coseriu A, Ramona S, Adrian O, Andras LN, Simona C. In vivo effects of Quercetin in association with moderate exercise training in improving strep-tozotocin-induced aortic tissue injuries. Molecules. 2015 DEc;20(12):21770-86. DOI: 10.3390/molecules20121980210.3390/201219802Open DOISearch in Google Scholar

15. Chiş IC, Baltaru D, Dumitrovici A, Coseriu A, Radu BC, Moldovan R, Mureşan A. Quercetin ameliorate oxidative/nitrosative stress in the brain of rats exposed to intermittent hypobaric hypoxia. Rev Virtual Quim. 2016 Mar;8(2):369-83. DOI: 10.5935/1984-6835.2016002710.5935/1984-6835.20160027Open DOISearch in Google Scholar

16. Chiş IC, Baltaru D, Clichici S, Oniga O, Cojocaru I, Nastasă C. The Effects of a 5-Chromen-yl-thiazolidin-2,4-dione Derivative in Alleviating Oxidative Stress in AdjuvantInduced Arthritis. Rev Chim. 2018 Sep;9(69): 2361-65.Search in Google Scholar

17. Chiş IC, Baltaru D, Dumitrovici A, Coseriu A, Radu BC, Moldovan R, Mureşan A. Protective effects of quercetin from oxidative/nitrosative stress under intermittent hypobaric hypoxia exposure in the rat’s heart. Physiol Int. 2018 Sep;105(3):233-46. DOI: 10.1556/2060.105.2018.3.2310.1556/2060.105.2018.3.23Open DOISearch in Google Scholar

18. Pyun SB, Kwon HK, Uhm CS. Effect of exercise on reinnervating soleus muscle after sciatic nerve injury in rats. J Korean Acad Rehabil Med. 1999;23:1063-75.Search in Google Scholar

19. Teixeira de Lemos E, Pinto R, Oliveira J, Garrido P, Sereno J, Mascarenhas-Melo F, et al. Differential Effects of Acute (Extenuating) and Chronic (Training) Exercise on Inflammation and Oxidative Stress Status in an Animal Model of Type 2 Diabetes Mellitus. Mediat Inflamm. 2011 Nov;2011:253061. DOI:10.1155/2011/253061. DOI: 10.1155/2011/253061Search in Google Scholar

20. Zhang H, Zhang C. Vasoprotection by dietary supplements and exercise: Role of TNFα signaling. Exp Diabetes Res. 2011 Nov;2012: 972679. DOI:10.1155/2012/972679. DOI: 10.1155/2012/972679Search in Google Scholar

21. Lee S, Park Y Dellsperger KC, Zhang C. Exercise training improves endothelial function via adiponectin-dependent and independent pathways in type 2 diabetic mice. Am J Physiol Heart Circ Physiol. 2011 Aug;301(2):H306-14. DOI: 10.1152/ajpheart.01306.201010.1152/ajpheart.01306.2010Open DOISearch in Google Scholar

22. Coskun O, Ocakci A, Bayraktaroglu T, Kanter M. Exercise training prevents and protects streptozotocininduced oxidative stress and beta-cell damage in rat pancreas. Tohoku J Exp Med. 2004 Jul;203(3):145-54. DOI: 10.1620/tjem.203.14510.1620/tjem.203.145Open DOISearch in Google Scholar

23. Rakieten N, Rakieten ML, Nadkarni MR. Studies on the diabetogenic action of streptozotocin (NSC-37917). Cancer Chemother Rep. 1963 May;29:91-8.Search in Google Scholar

24. Chang KS, Stevens WC. Endothelium-dependent increase in vascular sensitivity to phenylephrine in long-term streptozotocin diabetic rat aorta. Br J Pharmacol. 1992 Dec;107(4):983-90. DOI: 10.1111/j.1476-5381.1992.tb13395.x10.1111/j.1476-5381.1992.tb13395.xOpen DOISearch in Google Scholar

25. Chis IC, Clichici A, Nagy AL, Oros A, Catoi C, Clichici S. Quercetin in association with moderate exercise training attenuates injuries induced by experimental diabetes in sciatic nerves. Journal of physiology and pharmacology: an official journal of the Polish Physiological. 2017 Dec;68(6):877-86.Search in Google Scholar

26. Szkudelski T. The mechanism of alloxan and streptozotocin action of β-cells of the rat pancreas. Physiol Res. 2001;50(6):537-46.Search in Google Scholar

27. Oelze M, Knorr M, Schuhmacher S, Heeren T, Otto C, Schulz E, et al. Vascular dysfunction in streptozotocin-induced experimental diabetes strictly depends on insulin deficiency. J Vasc Res. 2011 Jan;48:275-84. DOI: 10.1159/00032062710.1159/000320627Open DOISearch in Google Scholar

28. Searls Y, Smirnova IV, Vanhoose L, Fegley B, Loga-nathan R, Stehno-Bittel L. Time-dependent alterations in rat macrovessels with type 1 diabetes. Exp Diabetes Res. 2012 Jan. DOI:10/1155/2012/278620. DOI: 10.1155/2012/278620Search in Google Scholar

29. Conti M, Morand PC, Levillain P. Improved fluoromeric determination of malonaldehyde. Clin Chem. 1991 Jul;37(7):1273-5.Search in Google Scholar

30. Kakkar P, Das B, Viswanthan PN. A modified spectrophotometric assay of superoxide dismutase (SOD). Indian J Biochem Biophys. 1984 Apr;21:130-2.Search in Google Scholar

31. Vats P, Singh VK, Singh SN, Singh SB. Glutathione metabolism under high-altitude stress and effect of antioxidant supplementation. Aviation, Space and Environmental Medicine. 2008 Dec;79(12):1106-11. DOI: 10.3357/ASEM.2305.200810.3357/ASEM.2305.2008Open DOISearch in Google Scholar

32. Avogaro A, Albiero M, Menegazzo L, de Kreutzenberg S, Fadini GP. Endothelial dysfunction in diabetes: The role of reparatory mechanisms. Diabetes Care. 2011 May; 34(Suppl 2):S285-90. DOI: 10.2337/dc11-s23910.2337/dc11-s239Open DOISearch in Google Scholar

33. Alam MM, Meerza D, Naseem I. Protective effect of quercetin on hyperglycemia, oxidative stress and DNA damage in alloxan induced type 2 diabetic mice. Life Sci. 2014 Jul;109(1):8-14. DOI: 10.1016/j.lfs.2014.06.00510.1016/j.lfs.2014.06.005Open DOISearch in Google Scholar

34. Rocha RE, Coelho I, Pequito DC, Yamagushi A, Borghetti G, Yamazaki RK, et al. Interval training attenuates the metabolic disturbances in type 1 diabetes rat model. Arq Bras Endocrinol Metab. 2013;57:594-602. DOI: 10.1590/S0004-2730201300080000310.1590/S0004-27302013000800003Open DOISearch in Google Scholar

35. Akazawa S, Tojikubo M, Nakano Y, Nakamura S, Tamai H, Yonemoto K, et al. Usefulness of carotid plaque (sum and maximum of plaque thickness) in combination with intima-media thickness for the detection of coronary artery disease in asymptomatic patients with diabetes. J Diabetes Investig. 2016 May;7(3):396-403. DOI: 10.1111/jdi.1240310.1111/jdi.12403Open DOISearch in Google Scholar

36. Yang J, Fan Z, Yang J, Ding J, Yang C, Chen L. MicroRNA-24 Attenuates Neointimal Hyperplasia in the Diabetic Rat Carotid Artery Injury Model by Inhibiting Wnt4 Signaling Pathway. Int J Mol Sci. 2016 Jun;17(6):E765. DOI: 10.3390/ijms17060765. DOI: 10.3390/ijms1706076510.3390/ijms17060765.DOI:10.3390/ijms17060765Open DOISearch in Google Scholar

37. Choi YS, Youn HJ, Youn JS, Park CS, Oh YS, Chung WS. Measurement of the intimal thickness of the carotid artery: comparison between 40 MHz ultra-sound and histology in rats. Ultrasound Med Biol. 2009 Jun;35(6):962-6. DOI: 10.1016/j.ultrasmedbio.2008.12.00410.1016/j.ultrasmedbio.2008.12.004Open DOISearch in Google Scholar

38. Wajima D, Nakagawa I, Takamura Y, Aketa S, Yonezawa T, Nakase H. Carotid artery stenosis is exacerbated in spontaneously obese model rats with diabetes. J Atheroscler Thromb. 2014 Jul;21(12):1253-9. DOI: 10.5551/jat.2466110.5551/jat.24661Open DOISearch in Google Scholar

39. Perez A, Gonzalez-Manzano S, Jimenez R, Perez-Abud R, Haro JM, Osuna A, et al. The flavonoid quercetin induces acute vasodilator effects in healthy volunteers: correlation with beta-glucuronidase activity. Pharmacol Res. 2014 Nov;89:11-8. DOI: 10.1016/j.phrs.2014.07.005Search in Google Scholar

40. Scridon A, Perian M, Marginean A, Fisca C, Vantu A, Ghertescu D, et al. Wistar rats with long-term streptozotocin-induced type 1 diabetes mellitus replicate the most relevant clinical, biochemical, and hematologic features of human diabetes. Rev Romana Med Lab. 2015;23(3):263-74. DOI: 10.1515/rrlm-2015-002810.1515/rrlm-2015-0028Open DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo