1. bookVolume 29 (2021): Issue 3 (July 2021)
Journal Details
License
Format
Journal
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
access type Open Access

Essentials in the diagnosis of postoperative myocardial lesions similar to or unrelated to rejection in heart transplant

Published Online: 31 Jul 2021
Page range: 307 - 318
Received: 07 Aug 2020
Accepted: 01 Mar 2021
Journal Details
License
Format
Journal
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
Abstract

Background, objectives: Histological diagnosis of control biopsies in patients with heart transplant represents a significant step of monitoring, with a great influence on adjusting immunosuppressive treatment. Histological lesions are usually related to ischemia and reperfusion, with varying degrees of intensity. This study aimed to highlight the most important aspects of the histological diagnosis and differential diagnosis of postoperative myocardial lesions associated or unrelated to rejection in heart transplant.

Materials and Methods: This retrospective study involved 53 patients who received cardiac transplant between 2000 and 2017. Patients were monitored by lesion quantification of endomyocardial biopsies, with diagnoses established based on biopsy material in the early, medium and late post-transplant periods. Hematoxylin eosin, Masson’s trichrome, and Van Gieson stains were used; immunohistochemical determinations used CD4, CD20, CD45, CD68, HLA-DR, VEGF and CD31.

Results: Ischemia and reperfusion lesions were diagnosed on all biopsies in the first 6 weeks post-transplant. Nine cases of the Quilty effect were identified, and in 12 cases, the biopsies were performed on the same spot as previous biopsies. A significant number of transplanted patients presented cytomegalovirus that was difficult to diagnose on endomyocardial biopsies.

Conclusions: The detailed study of ischemia and reperfusion lesions, as well as of changes un-related to rejection becomes a major objective in the short, medium and late post-transplant period. Overdiagnosis of rejection induces changes of the immunosuppressive therapeutic protocol, with alarming repercussions on cytomegalovirus reactivation, and risks of potentiating inflammation, myocyte destruction and the recurrence of disorders related to both inducing and aggravating heart failure.

Keywords

1. Alba AC, Bain E, Ng N, Stein M, Brien KO. Complications after Heart Transplantation: Hope for the Best, but Prepare for the Worst. Int J Transplant Res Med. 2016;2(2):2:022. DOI: 10.23937/2572-4045.1510022 Search in Google Scholar

2. Szymanska S, Grajkowska W, Sobieszczanska-Malek M, Zielinski T, Pyzlak M, Pronicki M. Prevalence of the Quilty effect in endomyocardial biopsy of patients after heart transplantation - from cellular rejection to antibody-mediated rejection? Pol J Pathol. 2016;67(3):216-20. DOI: 10.5114/pjp.2016.63772 Search in Google Scholar

3. Hunt SA, Haddad F. The changing face of heart transplantation. J Am Coll Cardiol. 2008;52(8):587-98. DOI: 10.1016/j.jacc.2008.05.020 Search in Google Scholar

4. Cipullo R, Finger MA, Rossi Neto JM, Contreras CM, Poltronieri NV, Zamorano Mde M, et al. Vasculitides and eosinophils in endomyocardial biopsies as rejection predictors in heart transplantation. Arq Bras Cardiol. 2011;97(2):163-70. DOI: 10.1590/S0066-782X2011005000069 Search in Google Scholar

5. Mozaffari K, Bakhshandeh H, Amin A, Naderi N, Taghavi S, Ojaghi-Haghighi Z, et al. Diagnostic Pitfalls and Challenges in Interpretation of Heart Transplantation Rejection in Endomyocardial Biopsies With Focus on our Experience. Res Cardiovasc Med. 2014;3(1):e13986. DOI: 10.5812/cardiovascmed.13986 Search in Google Scholar

6. Zakliczynski M, Nozynski J, Konecka-Mrowka D, Pyka L, Trybunia D, Swierad M, et al. Quilty effect correlates with biopsy-proven acute cellular rejection but does not predict transplanted heart coronary artery vasculopathy. J Heart Lung Transplant. 2009;28(3):255-9. DOI: 10.1016/j.healun.2008.12.011 Search in Google Scholar

7. Chu KE, Ho EK, de la Torre L, Vasilescu ER, Marboe CC. The relationship of nodular endocardial infiltrates (Quilty lesions) to survival, patient age, anti-HLA antibodies, and coronary artery disease following heart transplantation. Cardiovasc Pathol. 2005;14(4):219-24. DOI: 10.1016/j.carpath.2005.03.009 Search in Google Scholar

8. Rigol M, Solanes N, Sionis A, Galvez C, Martorell J, Rojo I, et al. Effects of cyclosporine, tacrolimus and sirolimus on vascular changes related to immune response. J Heart Lung Transplant. 2008;27(4):416-22. DOI: 10.1016/j.healun.2008.01.006 Search in Google Scholar

9. Joong A, Richmond ME, Stack KO, Rodriguez RJ, McAllister JM, Zuckerman WA, et al. The Quilty Effect in Pediatric Heart Transplant Recipients. The Journal of Heart and Lung Transplantation. 35(4):S75. DOI: 10.1016/j.healun.2016.01.204 Search in Google Scholar

10. Cho H, Choi JO, Jeon ES, Kim JS. Quilty Lesions in the Endomyocardial Biopsies after Heart Transplantation. J Pathol Transl Med. 2019;53(1):50-6. DOI: 10.4132/jptm.2018.11.30 Search in Google Scholar

11. Marboe CC, Billingham M, Eisen H, Deng MC, Baron H, Mehra M, et al. Nodular endocardial infiltrates (Quilty lesions) cause significant variability in diagnosis of ISHLT Grade 2 and 3A rejection in cardiac allograft recipients. J Heart Lung Transplant. 2005;24(7 Suppl):S219-26. DOI: 10.1016/j.healun.2005.04.001 Search in Google Scholar

12. Kobashigawa J, Wener L, Johnson J, Currier JW, Yeatman L, Cassem J, et al. Longitudinal study of vascular remodeling in coronary arteries after heart transplantation. J Heart Lung Transplant. 2000;19(6):546-50. DOI: 10.1016/S1053-2498(00)00100-5 Search in Google Scholar

13. Minicucci MF, Zornoff LAM. VEGFR-2: One of Pioglitazone’s Signaling Pathways in the Heart. Arq Bras Cardiol. 2018;111(2):170-1. DOI: 10.5935/abc.20180147 Search in Google Scholar

14. Waltenberger J, Kranz A, Beyer M. Neovascularization in the human heart is associated with expression of VEGF-A and its receptors Flt-1 (VEGFR-1) and KDR (VEGFR-2). Results from cardiomyopexy in ischemic cardiomyopathy. Angiogenesis. 1999;3(4):345-51. DOI: 10.1023/A:1026585900398 Search in Google Scholar

15. Ramzy D, Rao V, Brahm J, Miriuka S, Delgado D, Ross HJ. Cardiac allograft vasculopathy: a review. Can J Surg. 2005;48(4):319-27. Search in Google Scholar

16. Patel JK, Kobashigawa JA. Cardiac transplant experience with cyclosporine. Transplant Proc. 2004;36(2 Suppl):323S-30S. DOI: 10.1016/j.transproceed.2004.01.039 Search in Google Scholar

17. Maravić-Stojković V, Stojković B, Perić M. Modern immunosuppressive agents after heart transplantation. Curr Trend Cardiol. 2017;1(2):41-8. Search in Google Scholar

18. Kobashigawa JA, Miller LW, Russell SD, Ewald GA, Zucker MJ, Goldberg LR, et al. Tacrolimus with mycophenolate mofetil (MMF) or sirolimus vs. cyclosporine with MMF in cardiac transplant patients: 1-year report. Am J Transplant. 2006;6(6):1377-86. DOI: 10.1111/j.1600-6143.2006.01290.x Search in Google Scholar

19. Lopez Garcia-Gallo C, Garcia Fadul C, Laporta R, Portero F, Millan I, Ussetti P. Cytomegalovirus Immunoglobulin for Prophylaxis and Treatment of Cytomegalovirus Infection in the (Val)Ganciclovir Era: A Single-Center Experience. Ann Transplant. 2015;20:661-6. DOI: 10.12659/AOT.894694 Search in Google Scholar

20. Luckraz H, Charman SC, Wreghitt T, Wallwork J, Parameshwar J, Large SR. Does cytomegalovirus status influence acute and chronic rejection in heart transplantation during the ganciclovir prophylaxis era? J Heart Lung Transplant. 2003;22(9):1023-7. DOI: 10.1016/S1053-2498(02)01185-3 Search in Google Scholar

21. Bolovan-Fritts CA, Trout RN, Spector SA. High T-cell response to human cytomegalovirus induces chemokine-mediated endothelial cell damage. Blood. 2007;110(6):1857-63. DOI: 10.1182/blood-2007-03-078881 Search in Google Scholar

22. Frantzeskaki FG, Karampi ES, Kottaridi C, Alepaki M, Routsi C, Tzanela M, et al. Cytomegalovirus reactivation in a general, nonimmunosuppressed intensive care unit population: incidence, risk factors, associations with organ dysfunction, and inflammatory biomarkers. J Crit Care. 2015;30(2):276-81. DOI: 10.1016/j.jcrc.2014.10.002 Search in Google Scholar

23. Liu XF, Wang X, Yan S, Zhang Z, Abecassis M, Hummel M. Epigenetic control of cytomegalovirus latency and reactivation. Viruses. 2013;5(5):1325-45. DOI: 10.3390/v5051325 Search in Google Scholar

24. Barge-Caballero E, Almenar-Bonet L, Crespo-Leiro MG, Brossa-Loidi V, Rangel-Sousa D, Gomez-Bueno M, et al. Preoperative Toxoplasma gondii serostatus does not affect long-term survival of cardiac transplant recipients. Analysis of the Spanish Heart Transplantation Registry. Int J Cardiol. 2018;250:183-7. DOI: 10.1016/j.ijcard.2017.09.215 Search in Google Scholar

25. Kittleson MM, Kobashigawa JA. Toxoplasma gondii exposure in the heart transplant recipient: good, bad, or indifferent? Transplantation. 2013;96(12):1025. DOI: 10.1097/TP.0b013e3182a92769 Search in Google Scholar

26. Vitrone M, Iossa D, Rinaldi L, Pafundi PC, Molaro R, Parrella A, et al. Hepatitis B virus reactivation after heart transplant: Incidence and clinical impact. J Clin Virol. 2017;96:54-9. DOI: 10.1016/j.jcv.2017.09.011 Search in Google Scholar

27. Iossa D, Vitrone M, Liotti A, Portella G, Durante-Mangoni E, Zampino R. Hepatitis B core-related antigen to detect hepatitis B virus (HBV) reactivation in heart transplant recipients with past HBV infection: A pilot study. Clin Transplant. 2019;33(6):e13574. DOI: 10.1111/ctr.13574 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo