1. bookVolume 41 (2014): Issue 1 (March 2014)
Journal Details
First Published
04 Jul 2007
Publication timeframe
1 time per year
access type Open Access

Performance of different luminescence approaches for the dating of known-age glaciofluvial deposits from northern Switzerland

Published Online: 20 Dec 2013
Volume & Issue: Volume 41 (2014) - Issue 1 (March 2014)
Page range: 65 - 80
Journal Details
First Published
04 Jul 2007
Publication timeframe
1 time per year

Luminescence properties of two samples taken from sand lenses in proglacial outwash de-posits of a piedmont glacier that reached the Swiss midlands during the Last Glacial Maximum are investigated in detail. Deconvolution of CW-OSL decay curves shows that the fast component dominates the OSL signal of quartz. The chemistry of single feldspar grains, in particular the K content in different grains, is determined using wavelength dispersive spectrometry (electron microprobe), revealing an average 12.9 wt.% K of the grains contributing to the IRSL signal. D e distributions are investigated in order to gain insights into partial bleaching, and agreement is found for quartz OSL and feldspar IR50 and pIRIR225 ages for small aliquots and single grains when applying the Minimum Age Model. These ages are also consistent with independent age control. For one sample, ages determined using the Central Age Model result in highly overestimated ages for both feldspar and quartz.


[1] Adamiec G and Aitken MJ, 1998. Doserate conversion factors: update. Ancient TL 16(2): 37–50. Search in Google Scholar

[2] Aitken MJ, 1985. Thermoluminescence dating. Academic Press, London, 359 p. Search in Google Scholar

[3] Alexanderson H and Murray AS, 2012. Problems and potential of OSL dating Weichselian and Holocene sediments in Sweden. Quaternary Science Reviews 44: 37–50, DOI 10.1016/j.quascirev.2009.09.020. http://dx.doi.org/10.1016/j.quascirev.2009.09.02010.1016/j.quascirev.2009.09.020Search in Google Scholar

[4] Anderson A, Roberts R, Dickinson W, Clark G, Burley D, de Biran A, Hope G and Nunn P, 2006. Times of sand: Sedimentary history and archaeology at the Sigatoka Dunes, Fiji. Geoarchaeology — an International Journal 21(2): 131–154, DOI 10.1002/Gea.20094. http://dx.doi.org/10.1002/gea.2009410.1002/gea.20094Search in Google Scholar

[5] Auclair M, Lamothe M and Huot S, 2003. Measurement of anomalous fading for feldspar IRSL using SAR. Radiation Measurements 37(4–5): 487–492, DOI 10.1016/S1350-4487(03)00018-0. http://dx.doi.org/10.1016/S1350-4487(03)00018-010.1016/S1350-4487(03)00018-0Search in Google Scholar

[6] Bini A, Buoncristiani JF, Coutterand S, Ellwanger D, Felber M, Florineth D, Graf HR, Keller O, Kelly M, Schlüchter C and Schoeneich P, 2009. Die Schweiz während des letzteiszeitlichen Maximums (LGM) (Map 1:500 000). swisstopo, Wabern. Search in Google Scholar

[7] Blomdin R, Murray A, Thomsen KJ, Buylaert JP, Sohbati R, Jansson KN and Alexanderson H, 2012. Timing of the deglaciation in southern Patagonia: Testing the applicability of K-Feldspar IRSL. Quaternary Geochronology 10: 264–272, DOI 10.1016/j.quageo.2012.02.019. http://dx.doi.org/10.1016/j.quageo.2012.02.01910.1016/j.quageo.2012.02.019Search in Google Scholar

[8] Bronk Ramsey C, 2009. Bayesian Analysis of Radiocarbon Dates. Radiocarbon 51(1): 337–360. 10.1017/S0033822200033865Search in Google Scholar

[9] Buylaert JP, Jain M, Murray AS, Thomsen KJ, Thiel C and Sohbati R, 2012. A robust feldspar luminescence dating method for Middle and Late Pleistocene sediments. Boreas 41(3): 435–451, DOI 10.1111/j.1502-3885.2012.00248.x. http://dx.doi.org/10.1111/j.1502-3885.2012.00248.x10.1111/j.1502-3885.2012.00248.xSearch in Google Scholar

[10] Buylaert JP, Murray AS, Thomsen KJ and Jain M, 2009. Testing the potential of an elevated temperature IRSL signal from K-feldspar. Radiation Measurements 44(5–6): 560–565, DOI 10.1016/j.radmeas.2009.02.007. http://dx.doi.org/10.1016/j.radmeas.2009.02.00710.1016/j.radmeas.2009.02.007Search in Google Scholar

[11] Cunningham A, Wallinga J and Minderhoud P, 2011. Expectations of scatter in equivalent-dose distributions when using multi-grain aliquots for OSL dating. Geochronometria 38(4): 424–431, DOI 10.2478/s13386-011-0048-z. http://dx.doi.org/10.2478/s13386-011-0048-z10.2478/s13386-011-0048-zSearch in Google Scholar

[12] Cunningham AC and Wallinga J, 2010. Selection of integration time intervals for quartz OSL decay curves. Quaternary Geochronology 5(6): 657–666, DOI 10.1016/j.quageo.2010.08.004. http://dx.doi.org/10.1016/j.quageo.2010.08.00410.1016/j.quageo.2010.08.004Search in Google Scholar

[13] Duller GAT, 1994. Luminescence Dating of Poorly Bleached Sediments from Scotland. Quaternary Science Reviews 13(5–7): 521–524, DOI 10.1016/0277-3791(94)90070-1. http://dx.doi.org/10.1016/0277-3791(94)90070-110.1016/0277-3791(94)90070-1Search in Google Scholar

[14] Duller GAT, 2003. Distinguishing quartz and feldspar in single grain luminescence measurements. Radiation Measurements 37(2): 161–165, DOI 10.1016/S1350-4487(02)00170-1. http://dx.doi.org/10.1016/S1350-4487(02)00170-110.1016/S1350-4487(02)00170-1Search in Google Scholar

[15] Duller GAT, 2008. Single-grain optical dating of Quaternary sediments: why aliquot size matters in luminescence dating. Boreas 37(4): 589–612, DOI 10.1111/j.1502-3885.2008.00051.x. http://dx.doi.org/10.1111/j.1502-3885.2008.00051.x10.1111/j.1502-3885.2008.00051.xSearch in Google Scholar

[16] Duller GAT, 2013. Luminescence Analyst, 4.11 ed, Aberystwyth University. Search in Google Scholar

[17] Frechen M, Ellwanger D, Hinderer M, Lammermann-Barthel J, Neeb I and Techmer A, 2010. Late Pleistocene fluvial dynamics in the Hochrhein Valley and in the Upper Rhine Graben: chronological frame. International Journal of Earth Sciences 99(8): 1955–1974, DOI 10.1007/s00531-009-0482-9. http://dx.doi.org/10.1007/s00531-009-0482-910.1007/s00531-009-0482-9Search in Google Scholar

[18] Frechen M, Ellwanger D, Hinderer M, Lammermann-Barthel J, Neeb I and Techmer A, 2012. Reply to Preusser et al. on Frechen et al. “Late Pleistocene fluvial dynamics in the Hochrhein Valley in the upper Rhine Graben: chronological frame”. International Journal of Earth Sciences 101(1): 389–392, DOI 10.1007/s00531-011-0638-2. http://dx.doi.org/10.1007/s00531-011-0638-210.1007/s00531-011-0638-2Search in Google Scholar

[19] Fuchs M and Owen LA, 2008. Luminescence dating of glacial and associated sediments: review, recommendations and future directions. Boreas 37(4): 636–659, DOI 10.1111/j.1502-3885.2008.00052.x. http://dx.doi.org/10.1111/j.1502-3885.2008.00052.x10.1111/j.1502-3885.2008.00052.xSearch in Google Scholar

[20] Fuller IC, Wintle AG and Duller GAT, 1994. Test of the Partial Bleach Methodology as Applied to the Infrared Stimulated Luminescence of an Alluvial Sediment from the Danube. Quaternary Science Reviews 13(5–7): 539–543, DOI 10.1016/0277-3791(94)90074-4. http://dx.doi.org/10.1016/0277-3791(94)90074-410.1016/0277-3791(94)90074-4Search in Google Scholar

[21] Gaar D and Preusser F, 2012. Luminescence dating of mammoth remains from northern Switzerland. Quaternary Geochronology 10: 257–263, DOI 10.1016/j.quageo.2012.02.007. http://dx.doi.org/10.1016/j.quageo.2012.02.00710.1016/j.quageo.2012.02.007Search in Google Scholar

[22] Galbraith RF and Roberts RG, 2012. Statistical aspects of equivalent dose and error calculation and display in OSL dating: An overview and some recommendations. Quaternary Geochronology 11: 1–27, DOI 10.1016/j.quageo.2012.04.020. http://dx.doi.org/10.1016/j.quageo.2012.04.02010.1016/j.quageo.2012.04.020Search in Google Scholar

[23] Galbraith RF, Roberts RG, Laslett GM, Yoshida H and Olley JM, 1999. Optical dating of single and multiple grains of quartz from jinmium rock shelter, northern Australia, part 1, Experimental design and statistical models. Archaeometry 41: 339–364, DOI 10.1111/j.1475-4754.1999.tb00987.x. http://dx.doi.org/10.1111/j.1475-4754.1999.tb00987.x10.1111/j.1475-4754.1999.tb00987.xSearch in Google Scholar

[24] Godfrey-Smith DI, Huntley DJ and Chen WH, 1988. Optical Dating Studies of Quartz and Feldspar Sediment Extracts. Quaternary Science Reviews 7(3–4): 373–380, DOI 10.1016/0277-3791(88)90032-7. http://dx.doi.org/10.1016/0277-3791(88)90032-710.1016/0277-3791(88)90032-7Search in Google Scholar

[25] Graf HR, 2009. Stratigraphie von Mittel- und Spätpleistozän in der Nordschweiz (Stratigraphy of the Middle- and Late Pleistocene in Northern Switzerland). Landesgeologie, Wabern, 198 p (in German). Search in Google Scholar

[26] Hajdas I, 2009. Applications of Radiocarbon Dating Method. Radiocarbon 51(1): 79–90. 10.1017/S0033822200033713Search in Google Scholar

[27] Hajdas I, Michczynski A, Bonani G, Wacker L and Furrer H, 2009. Dating Bones near the Limit of the Radiocarbon Dating Method: Study Case Mammoth from Niederweningen, ZH Switzerland. Radiocarbon 51(2): 675–680. 10.1017/S0033822200056010Search in Google Scholar

[28] Huntley DJ and Baril MR, 1997. The K content of the K-feldspars beeing measured in optical dating or in thermoluminescence dating. Ancient TL 15(1): 11–14. Search in Google Scholar

[29] Huntley DJ and Lamothe M, 2001. Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating. Canadian Journal of Earth Sciences 38(7): 1093–1106, DOI 10.1139/cjes-38-7-1093. http://dx.doi.org/10.1139/e01-01310.1139/e01-013Search in Google Scholar

[30] Hütt G, Jaek I and Tchonka J, 1988. Optical Dating — K-Feldspars Optical-Response Stimulation Spectra. Quaternary Science Reviews 7(3–4): 381–385, DOI 10.1016/0277-3791(88)90033-9. http://dx.doi.org/10.1016/0277-3791(88)90033-910.1016/0277-3791(88)90033-9Search in Google Scholar

[31] Ivy-Ochs S, Kerschner H, Reuther A, Preusser F, Heine K, Maisch M, Kubik PW and Schlüchter C, 2008. Chronology of the last glacial cycle in the European Alps. Journal of Quaternary Science 23(6–7): 559–573, DOI 10.1002/Jqs.1202. http://dx.doi.org/10.1002/jqs.120210.1002/jqs.1202Search in Google Scholar

[32] Klasen N, Fiebig M, Preusser F and Radtke U, 2006. Luminescence properties of glaciofluvial sediments from the Bavarian Alpine Foreland. Radiation Measurements 41(7–8): 866–870, DOI 10.1016/j.radmeas.2006.04.014. http://dx.doi.org/10.1016/j.radmeas.2006.04.01410.1016/j.radmeas.2006.04.014Search in Google Scholar

[33] Klasen N, Fiebig M, Preusser F, Reitner JM and Radtke U, 2007. Luminescence dating of proglacial sediments from the Eastern Alps. Quaternary International 164–165: 21–32, DOI 10.1016/j.quaint.2006.12.003. http://dx.doi.org/10.1016/j.quaint.2006.12.00310.1016/j.quaint.2006.12.003Search in Google Scholar

[34] Kock S, Kramers JD, Preusser F and Wetzel A, 2009. Dating of Late Pleistocene terrace deposits of the River Rhine using Uranium series and luminescence methods: Potential and limitations. Quaternary Geochronology 4(5): 363–373, DOI 10.1016/j.quageo.2009.04.002. http://dx.doi.org/10.1016/j.quageo.2009.04.00210.1016/j.quageo.2009.04.002Search in Google Scholar

[35] Kreutzer S, Schmidt C, Fuchs MC, Dietze M, Fischer M and Fuchs M, 2012. Introducing an R package for luminescence dating analysis. Ancient TL 30(1): 1–8. Search in Google Scholar

[36] Kulig G, 2005. Erstellung einer Auswertesoftware zur Altersbestimmung mittels Lumineszenzverfahren unter spezieller Berücksichtigung des Einflusses radioaktiver Ungleichgewichte in der 238U-Zerfallsreihe (Creation of a software for luminescence dating with special attention to the influence of radioactive disequilibria in the 238U decay chain). Technische Bergakademie Freiberg, Freiberg unpublished Bsc thesis (in German). Search in Google Scholar

[37] Lamothe M, Balescu S and Auclair M, 1994. Natural IRSL intensities and apparent luminescence ages of single feldspar grains extracted from partially bleached sediments. Radiation Measurements 23(2–3): 555–561, DOI 10.1016/1350-4487(94)90099-X. http://dx.doi.org/10.1016/1350-4487(94)90099-X10.1016/1350-4487(94)90099-XSearch in Google Scholar

[38] Lapp T, Jain M, Thomsen KJ, Murray AS and Buylaert J-P, 2012. New luminescence measurement facilities in retrospective dosimetry. Radiation Measurements 47(9): 803–808, DOI 10.1016/j.radmeas.2012.02.006. http://dx.doi.org/10.1016/j.radmeas.2012.02.00610.1016/j.radmeas.2012.02.006Search in Google Scholar

[39] Lepper K, Larsen NA and McKeever SWS, 2000. Equivalent dose distribution analysis of Holocene eolian and fluvial quartz sands from Central Oklahoma. Radiation Measurements 32(5–6): 603–608, DOI 10.1016/S1350-4487(00)00093-7. http://dx.doi.org/10.1016/S1350-4487(00)00093-710.1016/S1350-4487(00)00093-7Search in Google Scholar

[40] Li B, Li SH, Duller GAT and Wintle AG, 2011. Infrared stimulated luminescence measurements of single grains of K-rich feldspar for isochron dating. Quaternary Geochronology 6(1): 71–81, DOI 10.1016/j.quageo.2010.02.003. http://dx.doi.org/10.1016/j.quageo.2010.02.00310.1016/j.quageo.2010.02.003Search in Google Scholar

[41] Lowick SE, Trauerstein M and Preusser F, 2012. Testing the application of post IR-IRSL dating to fine grain waterlain sediments. Quaternary Geochronology 8: 33–40, DOI 10.1016/j.quageo.2011.12.003. http://dx.doi.org/10.1016/j.quageo.2011.12.00310.1016/j.quageo.2011.12.003Search in Google Scholar

[42] McKeever SWS and Chen R, 1997. Luminescence models. Radiation Measurements 27(5–6): 625–661, DOI 10.1016/S1350-4487(97)00203-5. http://dx.doi.org/10.1016/S1350-4487(97)00203-510.1016/S1350-4487(97)00203-5Search in Google Scholar

[43] Murray AS, Thomsen KJ, Masuda N, Buylaert JP and Jain M, 2012. Identifying well-bleached quartz using the different bleaching rates of quartz and feldspar luminescence signals. Radiation Measurements 47(9): 688–695, DOI 10.1016/j.radmeas.2012.05.006. http://dx.doi.org/10.1016/j.radmeas.2012.05.00610.1016/j.radmeas.2012.05.006Search in Google Scholar

[44] Murray AS and Wintle AG, 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32(1): 57–73, DOI 10.1016/S1350-4487(99)00253-X. http://dx.doi.org/10.1016/S1350-4487(99)00253-X10.1016/S1350-4487(99)00253-XSearch in Google Scholar

[45] Olley JM, Caitcheon GG and Roberts RG, 1999. The origin of dose distributions in fluvial sediments, and the prospect of dating single grains from fluvial deposits using optically stimulated luminescence. Radiation Measurements 30(2): 207–217, DOI 10.1016/S1350-4487(99)00040-2. http://dx.doi.org/10.1016/S1350-4487(99)00040-210.1016/S1350-4487(99)00040-2Search in Google Scholar

[46] Prescott JR and Hutton JT, 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations. Radiation Measurements 23(2–3): 497–500, DOI 10.1016/1350-4487(94)90086-8. http://dx.doi.org/10.1016/1350-4487(94)90086-810.1016/1350-4487(94)90086-8Search in Google Scholar

[47] Preusser F, 1999a. Bleaching characteristics of some optically stimulated luminescence signals. Ancient TL 17(1): 11–14. Search in Google Scholar

[48] Preusser F, 1999b. Luminescence dating of fluvial sediments and over-bank deposits from Gossau, Switzerland: fine grain dating. Quaternary Science Reviews 18(2): 217–222, DOI 10.1016/S0277-3791 (98)00054-7. http://dx.doi.org/10.1016/S0277-3791(98)00054-710.1016/S0277-3791(98)00054-7Search in Google Scholar

[49] Preusser F, Blei A, Graf H and Schlüchter C, 2007. Luminescence dating of Würmian (Weichselian) proglacial sediments from Switzerland: methodological aspects and stratigraphical conclusions. Boreas 36(2): 130–142, DOI 10.1080/03009480600923378. http://dx.doi.org/10.1111/j.1502-3885.2007.tb01187.x10.1111/j.1502-3885.2007.tb01187.xSearch in Google Scholar

[50] Preusser F, Chithambo ML, Gotte T, Martini M, Ramseyer K, Sendezera EJ, Susino GJ and Wintle AG, 2009. Quartz as a natural luminescence dosimeter. Earth-Science Reviews 97(1–4): 184–214, DOI 10.1016/j.earscirev.2009.09.006. http://dx.doi.org/10.1016/j.earscirev.2009.09.00610.1016/j.earscirev.2009.09.006Search in Google Scholar

[51] Preusser F and Degering D, 2007. Luminescence dating of the Niederweningen mammoth site, Switzerland. Quaternary International 164–65: 106–112, DOI 10.1016/j.quaint.2006.12.002. http://dx.doi.org/10.1016/j.quaint.2006.12.00210.1016/j.quaint.2006.12.002Search in Google Scholar

[52] Preusser F, Degering D, Fuchs M, Hilgers A, Kadereit A, Klasen N, Krbetschek M, Richter D and Spencer JQG, 2008. Luminescence Dating: basics, methods and applications. E&G — Quaternary Science Journal 57(1–2): 95–149, DOI 10.3285/eg.57.1-2.5. 10.3285/eg.57.1-2.5Search in Google Scholar

[53] Preusser F, Geyh MA and Schlüchter C, 2003. Timing of late pleistocene climate change in lowland Switzerland. Quaternary Science Reviews 22(14): 1435–1445, DOI 10.1016/S0277-3791 (03)00127-6. http://dx.doi.org/10.1016/S0277-3791(03)00127-610.1016/S0277-3791(03)00127-6Search in Google Scholar

[54] Preusser F, Graf HR, Keller O, Krayss E and Schlüchter C, 2011. Quaternary glaciation history of northern Switzerland. E&G — Quaternary Science Journal 60(2–3): 282–305, DOI 10.3285/eg.60.2-3.06. 10.3285/eg.60.2-3.06Search in Google Scholar

[55] Preusser F and Kasper HU, 2001. Comparison of dose rate determination using high-resolution gamma spectrometry and inductively coupled plasmamass spectrometry. Ancient TL 19(1): 19–23. Search in Google Scholar

[56] Preusser F, Kock S and Rodnight H, 2012. Comment on Frechen et al. “Late Pleistocene fluvial dynamics in the Hochrhein Valle and in the Upper Rhine Graben: chronological frame”. International Journal of Earth Sciences 101(1): 385–387, DOI 10.1007/s00531-011-0641-7. http://dx.doi.org/10.1007/s00531-011-0641-710.1007/s00531-011-0641-7Search in Google Scholar

[57] Preusser F, Müller BU and Schlüchter C, 2001. Luminescence dating of sediments from the Luthern Valley, central Switzerland, and implications for the chronology of the last glacial cycle. Quaternary Research 55(2): 215–222, DOI 10.1006/qres.2000.2208. http://dx.doi.org/10.1006/qres.2000.220810.1006/qres.2000.2208Search in Google Scholar

[58] Preusser F, Ramseyer K and Schlüchter C, 2006. Characterisation of low OSL intensity quartz from the New Zealand Alps. Radiation Measurements 41(7–8): 871–877, DOI 10.1016/j.radmeas.2006.04.019. http://dx.doi.org/10.1016/j.radmeas.2006.04.01910.1016/j.radmeas.2006.04.019Search in Google Scholar

[59] Qin JT and Zhou LP, 2012. Effects of thermally transferred signals in the post-IR IRSL SAR protocol. Radiation Measurements 47(9): 710–715, DOI 10.1016/j.radmeas.2011.12.011. http://dx.doi.org/10.1016/j.radmeas.2011.12.01110.1016/j.radmeas.2011.12.011Search in Google Scholar

[60] Reimann T, Thomsen KJ, Jain M, Murray AS and Frechen M, 2012. Single-grain dating of young sediments using the pIRIR signal from feldspar. Quaternary Geochronology 11: 28–41, DOI 10.1016/j.quageo.2012.04.016. http://dx.doi.org/10.1016/j.quageo.2012.04.01610.1016/j.quageo.2012.04.016Search in Google Scholar

[61] Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, van der Plicht J and Weyhenmeye CE, 2009. Intcal09 and Marine09 Radiocarbon Age Calibration Curves, 0–50,000 Years Cal Bp. Radiocarbon 51(4): 1111–1150. 10.1017/S0033822200034202Search in Google Scholar

[62] Rowan AV, Roberts HM, Jones MA, Duller GAT, Covey-Crump SJ and Brocklehurst SH, 2012. Optically stimulated luminescence dating of glaciofluvial sediments on the Canterbury Plains, South Island, New Zealand. Quaternary Geochronology 8: 10–22, DOI 10.1016/j.quageo.2011.11.013. http://dx.doi.org/10.1016/j.quageo.2011.11.01310.1016/j.quageo.2011.11.013Search in Google Scholar

[63] Schlüchter C, Maisch M, Suter J, Fitze P, Keller WA, Burga CA and Wynistorf E, 1987. Das Schieferkohlen-Profil von Gossau (Kanton Zürich) und seine stratigraphische Stellung innerhalb der letzten Eiszeit (The profile of foliated peat at Gossau (Kt. Zurich), and its stratigraphic position within the last glaciation). Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 132(3): 135–174 (in German). Search in Google Scholar

[64] Smedley RK, Duller GAT, Pearce NJG and Roberts HM, 2012. Determining the K-content of single-grains of feldspar for luminescence dating. Radiation Measurements 47(9): 790–796, DOI 10.1016/j.radmeas.2012.01.014. http://dx.doi.org/10.1016/j.radmeas.2012.01.01410.1016/j.radmeas.2012.01.014Search in Google Scholar

[65] Smith BW and Rhodes EJ, 1994. Charge Movements in Quartz and Their Relevance to Optical Dating. Radiation Measurements 23(2–3): 329–333, DOI 10.1016/1350-4487(94)90060-4. http://dx.doi.org/10.1016/1350-4487(94)90060-410.1016/1350-4487(94)90060-4Search in Google Scholar

[66] Sohbati R, Murray AS, Buylaert JP, Ortuno M, Cunha PP and Masana E, 2012. Luminescence dating of Pleistocene alluvial sediments affected by the Alhama de Murcia fault (eastern Betics, Spain) — a comparison between OSL, IRSL and post-IR IRSL ages. Boreas 41(2): 250–262, DOI 10.1111/j.1502-3885.2011.00230.x. http://dx.doi.org/10.1111/j.1502-3885.2011.00230.x10.1111/j.1502-3885.2011.00230.xSearch in Google Scholar

[67] Spooner NA, 1994. The Anomalous Fading of Infrared-Stimulated Luminescence from Feldspars. Radiation Measurements 23(2–3): 625–632, DOI 10.1016/1350-4487(94)90111-2. http://dx.doi.org/10.1016/1350-4487(94)90111-210.1016/1350-4487(94)90111-2Search in Google Scholar

[68] Steffen D, Preusser F and Schlunegger F, 2009. OSL quartz age underestimation due to unstable signal components. Quaternary Geochronology 4(5): 353–362, DOI 10.1016/j.quageo.2009.05.015. http://dx.doi.org/10.1016/j.quageo.2009.05.01510.1016/j.quageo.2009.05.015Search in Google Scholar

[69] Stevens T, Markovic SB, Zech M, Hambach U and Sumegi P, 2011. Dust deposition and climate in the Carpathian Basin over an independently dated last glacial-interglacial cycle. Quaternary Science Reviews 30(5–6): 662–681, DOI 10.1016/j.quascirev.2010.12.011. http://dx.doi.org/10.1016/j.quascirev.2010.12.01110.1016/j.quascirev.2010.12.011Search in Google Scholar

[70] Thiel C, Buylaert J-P, Murray AS, Terhorst B, Tsukamoto S, Frechen M and Sprafke T, 2011. Investigating the chronostratigraphy of prominent palaeosols in Lower Austria using post-IR IRSL dating. E&G — Quaternary Science Journal 60(1): 137–152, DOI 10.3285/eg.60.1.10. 10.3285/eg.60.1.10Search in Google Scholar

[71] Thomas PJ, Murray AS, Kjaer KH, Funder S and Larsen E, 2006. Optically Stimulated Luminescence (OSL) dating of glacial sediments from Arctic Russia — depositional bleaching and methodological aspects. Boreas 35(3): 587–599, DOI 10.1080/03009480600781933. http://dx.doi.org/10.1080/0300948060078193310.1080/03009480600781933Search in Google Scholar

[72] Thomsen KJ, Murray AS, Jain M and Botter-Jensen L, 2008. Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts. Radiation Measurements 43(9–10): 1474–1486, DOI 10.1016/j.radmeas.2008.06.002. http://dx.doi.org/10.1016/j.radmeas.2008.06.00210.1016/j.radmeas.2008.06.002Search in Google Scholar

[73] Thrasher IM, Mauz B, Chiverrell RC and Lang A, 2009. Luminescence dating of glaciofluvial deposits: A review. Earth-Science Reviews 97(1–4): 133–146, DOI 10.1016/j.earscirev.2009.09.001. http://dx.doi.org/10.1016/j.earscirev.2009.09.00110.1016/j.earscirev.2009.09.001Search in Google Scholar

[74] Trauerstein M, Lowick S, Preusser F, Rufer D and Schlunegger F, 2012. Exploring fading in single grain feldspar IRSL measurements. Quaternary Geochronology 10: 327–333, DOI 10.1016/j.quageo.2012.02.004. http://dx.doi.org/10.1016/j.quageo.2012.02.00410.1016/j.quageo.2012.02.004Search in Google Scholar

[75] Trautmann T, Krbetschek MR, Dietrich A and Stolz W, 2000. The basic principle of radioluminescence dating and a localized transition model. Radiation Measurements 32(5–6): 487–492, DOI 10.1016/S1350-4487(00)00119-0. http://dx.doi.org/10.1016/S1350-4487(00)00119-010.1016/S1350-4487(00)00119-0Search in Google Scholar

[76] Tsukamoto S, Denby PM, Murray AS and Botter-Jensen L, 2006. Time-resolved luminescence from feldspars: New insight into fading. Radiation Measurements 41(7–8): 790–795, DOI 10.1016/j.radmeas.2006.05.013. http://dx.doi.org/10.1016/j.radmeas.2006.05.01310.1016/j.radmeas.2006.05.013Search in Google Scholar

[77] Wallinga J, 2002a. On the detection of OSL age overestimation using single-aliquot techniques. Geochronometria 21: 17–26. Search in Google Scholar

[78] Wallinga J, 2002b. Optically stimulated luminescence dating of fluvial deposits: a review. Boreas 31(4): 303–322, DOI 10.1111/j.1502-3885.2002.tb01076.x. http://dx.doi.org/10.1080/03009480232094253610.1080/030094802320942536Search in Google Scholar

[79] Wintle AG, 1973. Anomalous Fading of Thermoluminescence in Mineral Samples. Nature 245(5421): 143–144, DOI 10.1038/245143a0. http://dx.doi.org/10.1038/245143a010.1038/245143a0Search in Google Scholar

[80] Wintle AG and Murray AS, 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements 41(4): 369–391, DOI 10.1016/j.radmeas.2005.11.001. http://dx.doi.org/10.1016/j.radmeas.2005.11.00110.1016/j.radmeas.2005.11.001Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo