1. bookVolume 41 (2014): Issue 4 (December 2014)
Journal Details
License
Format
Journal
First Published
04 Jul 2007
Publication timeframe
1 time per year
Languages
English
access type Open Access

LA-ICP-MS U-Pb dating and REE patterns of apatite from the Tatra Mountains, Poland as a monitor of the regional tectonomagmatic activity

Published Online: 01 Oct 2014
Page range: 306 - 314
Journal Details
License
Format
Journal
First Published
04 Jul 2007
Publication timeframe
1 time per year
Languages
English

This study presents apatite LA-ICP-MS U-Pb age and trace elements concentrations data from different granite types from the Tatra Mountains, Poland. Apatite from monazite and xenotime-bearing High Tatra granite was dated at 339 ± 5 Ma. The apatite LREE patterns reflect two types of magmas that contributed to this layered magma series. Apatite from a hybrid allanite-bearing diorite from the Goryczkowa Unit was dated at 340 ± 4 Ma with apatite LREE depletion reflecting the role of allanite and titanite during apatite crystallization. Apatite crystals from a hybrid cumulative rock from the Western Tatra Mountains were dated at 344 ± 3 Ma. Apatite is one of the main REE carriers in this sample and exhibit flat REE patterns.

Keywords

[1] Bea F, 1996. Residence of REE, Y, Th and U in granites and crustal protoliths; implications for the chemistry of crustal melts. Journal of Petrology 37(3) 521–552, DOI 10.1093/petrology/37.3.521. http://dx.doi.org/10.1093/petrology/37.3.521Search in Google Scholar

[2] Belousova EA, Griffin WL, O’Reilly SY and Fisher NI, 2002. Apatite as an indicator mineral for mineral exploration: trace element compositions and their relationship to host rocks type. Journal of Geochemical Exploration 76(1): 45–69, DOI 10.1016/S0375-6742(02)00204-2. http://dx.doi.org/10.1016/S0375-6742(02)00204-2Search in Google Scholar

[3] Broska I and Uher P, 2001. Whole-rock chemistry and genetic typology of the West-Carpathian Variscan granites. Geologia Carpathica 52: 79–90. Search in Google Scholar

[4] Burda J and Gawęda A, 2009. Shear-influenced partial melting in the Western Tatra metamorphic complex: geochemistry and geochronology. Lithos 110(1–4): 373–385, DOI 10.1016/j.lithos.2009.01.010. http://dx.doi.org/10.1016/j.lithos.2009.01.010Search in Google Scholar

[5] Burda J, Gawęda A and Klötzli U, 2011. Magma hybridization in the Western Tatra Mountains granitoid intrusion (S-Poland, Western Carpathians). Mineralogy and Petrology 103(1–4): 19–36, DOI 10.1007/s00710-011-0150-1. http://dx.doi.org/10.1007/s00710-011-0150-1Search in Google Scholar

[6] Burda J, Gawęda A and Klötzli U, 2013a. U-Pb zircon age of the youngest magmatic activity in the High Tatra granite. Geochronometria 40(2): 134–144, DOI 10.2478/s13386-013-0106-9. http://dx.doi.org/10.2478/s13386-013-0106-9Search in Google Scholar

[7] Burda J, Gawęda A and Klötzli U, 2013b. Geochronology and petro-genesis of granitoid rocks from the Goryczkowa Unit, Tatra Mountains (Central Western Carpathians). Geologica Carpathica 64(6): 419–435, DOI 10.2478/geoca-2013-0029. http://dx.doi.org/10.2478/geoca-2013-0029Search in Google Scholar

[8] Chamberlain KR and Bowring SA, 2000. Apatite-feldspar U-Pb thermochronometer: A reliable, mid-range (450°C), diffusion controlled system. Chemical Geology 172(1–2): 173–200, DOI 10.1016/S0009-2541(00)00242-4. Search in Google Scholar

[9] Chew DM, Sylvester PJ and Tubrett MN, 2011. U-Pb and Th-Pb dating of apatite by LA-ICP-MS. Chemical Geology 280(1–2): 200–216, DOI 10.1016/j.chemgeo.2010.11.010. http://dx.doi.org/10.1016/j.chemgeo.2010.11.010Search in Google Scholar

[10] Chew DM and Donelick RA, 2012. Combined apatite fission track and U-Pb dating by LA-ICPMS and future trends in apatite provenance analysis. In: Sylvester, P. Ed., Quantitative Mineralogy and Microanalysis of Sediments and Sedimentary Rocks. Mineralogical Association of Canada: 219–248. Search in Google Scholar

[11] Chew DM, Petrus JA and Kamber BS, 2014. U-Pb LA-ICPMS dating using accessory mineral standards with variable common Pb. Chemical Geology 363: 185–199, DOI 10.1016/j.chemgeo.2013.11.006. http://dx.doi.org/10.1016/j.chemgeo.2013.11.006Search in Google Scholar

[12] Chu M, Wang K, Griffin W, Chung S, O’Reilly S, Pearson N and Iizuka I, 2009. Apatite composition: tracing petrogenetic processes in Transhimalayan granitoids. Journal of Petrology 50(10): 1829–1855, DOI 10.1093/petrology/egp054. http://dx.doi.org/10.1093/petrology/egp054Search in Google Scholar

[13] Cochrane R, Spikings RA, Chew D, Wotzlaw J-F, Chiaradia M, Tyrrell S, Schaltegger U and Van der Lelij R, 2014. High temperature (> 350°C) thermochronology and mechanisms of Pb loss in apatite. Geochimica et Cosmochimica Acta 127: 39–56, DOI 10.1016/j.gca.2013.11.028. http://dx.doi.org/10.1016/j.gca.2013.11.028Search in Google Scholar

[14] Dempster TJ, Jolivet M, Tubrett MN and Braithwaite CJR, 2003. Magmatic zoning in apatite: a monitor of porosity and permeability change in granites. Contribution to Mineralogy and Petrology 145: 568–577, DOI 10.1007/s00410-003-0471-0. http://dx.doi.org/10.1007/s00410-003-0471-0Search in Google Scholar

[15] Gawęda A, 2008. Apatite-rich enclave in the High Tatra granite, Western Carpathians: petrological and geochronological study. Geologica Carpathica 59(4): 295–306. Search in Google Scholar

[16] Gawęda A, 2009. Enclaves in the High Tatra Granite. University of Silesia publishing House, Monographic series 2637, Katowice: 180 pages (in Polish, English abstract). Search in Google Scholar

[17] Gawęda A, Doniecki T, Burda J and Kohút M, 2005. The petrogenesis of quartz-diorites from the Tatra Mountains (Central Western Carpathians): an example of magma hybridisation. Neues Jahrbuch für Mineralogie Abhandlungen 181(1): 95–109. http://dx.doi.org/10.1127/0077-7757/2005/0181-0005Search in Google Scholar

[18] Gawęda A and Sikorska M, 2009. Alkali feldspar megacrysts from the High Tatra granite — indicators of magma mixing/mingling processes. Mineralogia — Special Papers 35: 82. Search in Google Scholar

[19] Gawęda A and Szopa K, 2011. The origin of magmatic layering in the High Tatra granite, Central Western Carpathians — implications for the formation of granitoid plutons. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 102(2): 129–144, DOI 10.1017/S1755691012010146. http://dx.doi.org/10.1017/S1755691012010146Search in Google Scholar

[20] Hoskin PWO, Kinny PD, Wyborn D and Chappell BW, 2000. Identifying accessory mineral saturation during differentiation in granitoid magmas: an integrated approach. Journal of Petrology 41(9): 1365–1396, DOI 10.1093/petrology/41.9.1365. http://dx.doi.org/10.1093/petrology/41.9.1365Search in Google Scholar

[21] Kohút M and Janak M, 1994. Granitoids of the Tatra Mts., Western Carpathians: Field relations and petrogenetic implications. Geologica Carpathica 45(5): 301–311. Search in Google Scholar

[22] Kohut M and Sherlock S, 2003. Laser microprobe 40Ar-39Ar analysis of pseudotachylyte and host-rocks from the Tatra Mountains, Slovakia: evidence for late Palaeogene seismic/tectonic activity. Terra Nova 15(6): 417–424, DOI 10.1046/j.1365-3121.2003.00514.x. http://dx.doi.org/10.1046/j.1365-3121.2003.00514.xSearch in Google Scholar

[23] Jurewicz E, 2006. Petrophysical control on the mode of shearing in the sedimentary rocks and granitoid core of the Tatra Mountain during Late Cretaceous nappe thrusting and folding, Carpathians, Poland. Acta Geologica Polonica 56(2): 159–170. Search in Google Scholar

[24] Morozewicz K, 1914. Über die Tatragranite. Neues Jahrbuch für Geologie und Palaontologie-Abhandlungen 39: 289–345. Search in Google Scholar

[25] Paton C, Helistrom J, Paul B, Woodhead J and Herqt J, 2011. Iolite: freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry 26: 2508–2518, DOI 10.1039/C1JA10172B. http://dx.doi.org/10.1039/c1ja10172bSearch in Google Scholar

[26] Petrus JA and Kamber BS, 2012. VizualAge: A Novel Approach to Laser Ablation ICP-MS U-Pb Geochronology Data Reduction. Geostandards and Geoanalytical Research 36(3): 247–270, DOI 10.1111/j.1751-908X.2012.00158.x. http://dx.doi.org/10.1111/j.1751-908X.2012.00158.xSearch in Google Scholar

[27] Piccoli PM and Candela PA, 2002. Apatite in igneous systems. Review in Mineralogy and Geochemistry 48(1): 255–292, DOI 10.2138/rmg.2002.48.6. http://dx.doi.org/10.2138/rmg.2002.48.6Search in Google Scholar

[28] Poller U and Todt W, 2000. U-Pb single zircon data of granitoids from the High Tatra Mountains (Slovakia): implications for the geodynamic evolution. Transactions of the Royal Society of Edinburgh: Earth Sciences 91(1–2): 235–243, DOI 10.1017/S0263593300007409. http://dx.doi.org/10.1017/S0263593300007409Search in Google Scholar

[29] Poller U, Janak M, Kohút M. and Todt W, 2000. Early Variscan magmatism in the Western Carpathians: U-Pb zircon data from granitoids and orthogneisses of the Tatra Mountains, Slovakia. International Journal of Earth Sciences 89(2): 336–349, DOI 10.1007/s005310000082. http://dx.doi.org/10.1007/s005310000082Search in Google Scholar

[30] Prowatke S and Klemme S, 2006. Trace element partitioning between apatite and silicate melt. Geochimica et Cosmochimica Acta 70(17): 4513–4527, DOI 10.1016/j.gca.2006.06.162. http://dx.doi.org/10.1016/j.gca.2006.06.162Search in Google Scholar

[31] Schoene B and Bowring SA, 2006. U-Pb systematics of the McClure Mountain syenite: thermochronological constraints on the age of the Ar-40/Ar-39 standard MMhb. Contributions to Mineralogy and Petrology 151(5): 615–630, DOI 10.1007/s00410-006-0077-4. http://dx.doi.org/10.1007/s00410-006-0077-4Search in Google Scholar

[32] Schoene B and Bowring SA, 2007. Determining accurate temperature-time paths from U-Pb thermochronology: An example from the Kaapval craton, southern Africa. Geochimica et Cosmochimica Acta 71(1): 165–185, DOI 10.1016/j.gca.2006.08.029. http://dx.doi.org/10.1016/j.gca.2006.08.029Search in Google Scholar

[33] Sha L-K and Chappell BW, 1999. Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petro-genesis. Geochimica et Cosmochimica Acta 63(22): 3861–3881, DOI 10.1016/S0016-7037(99)00210-0. http://dx.doi.org/10.1016/S0016-7037(99)00210-0Search in Google Scholar

[34] Stacey JS and Kramers JD, 1975. Approximation of terrestrial lead isotope evolution by a two stage model. Earth and Planetary Science Letters 26(2): 207–221, DOI 10.1016/0012-821X(75)90088-6. http://dx.doi.org/10.1016/0012-821X(75)90088-6Search in Google Scholar

[35] Sun SS and McDonough WF, 1989. Chemical and isotopical systematics of oceanic basalts: implications for mantle composition and processes. Magmatism in the Oceanic Basins. Geological Society Special Publications 42: 313–345. http://dx.doi.org/10.1144/GSL.SP.1989.042.01.19Search in Google Scholar

[36] Szopa K, Gawęda A, Müller A and Sikorska M, 2013. The petrogenesis of granitoid rocks unusually rich in apatite in the Western Tatra Mts. (S-Poland, Western Carpathians). Mineralogy and Petrology 107(4): 609–627, DOI 10.1007/s00710-012-0262-2. http://dx.doi.org/10.1007/s00710-012-0262-2Search in Google Scholar

[37] Yurimoto H, Duke EF, Papike JJ and Shearer CK, 1990. Are discontinuous chondrite-normalized REE patterns in pegmatitic granite systems the results of monazite fractionation? Geochimica et Cosmochimica Acta 54(7): 2141–2145, DOI 10.1016/0016-7037(90)90277-R. http://dx.doi.org/10.1016/0016-7037(90)90277-RSearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo