1. bookVolume 40 (2011): Issue 3 (September 2011)
Journal Details
First Published
23 Feb 2007
Publication timeframe
access type Open Access

Effects of polycyclic aromatic hydrocarbons exposure on antioxidant system activities and proline content in Kandelia candel

Published Online: 24 Aug 2011
Page range: 9 - 18
Journal Details
First Published
23 Feb 2007
Publication timeframe

The antioxidant system effects of Kandelia candel were investigated under four different levels of PAH stress. The activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), the responses to the change of malondialdehyde (MDA) contents and the accumulation of proline in K. candel were determined. Our results suggested that the activities of SOD, CAT, POD increased significantly in leaves and roots of K. candel (p≤0.05) with the increase of the external PAH concentrations, while in stems, the activities of these antioxidant enzymes were all significantly inhibited (p≤0.01). We also observed an increase of MDA in leaves, stems and roots, and an obvious correlation between MDA content and PAH concentrations in three locations, which showed that the change of MDA content could be used as a biomarker of K. candel under PAH stress. The proline content was found remarkably enhanced in leaves, stems and roots. However, a significant inverse correlation was observed between the proline content and SOD (r=−0.99, p≤0.01), POD (r=−0.95, p≤0.05) activities in stems. This study suggested that the antioxidative system of K. candel has an obvious organ-dependent feature when exposed to PAH contamination as revealed by discriminant analysis (DA).


[1] Alia P.M., Matysik J., 2001, Effect of proline on the production of singlet oxygen, Amino Acids, 21: 195–200 http://dx.doi.org/10.1007/s007260170026 Search in Google Scholar

[2] Alscher R.G., Erturk N., Heath L.S., 2002, Role of superoxide dismutases (SODs) in controlling oxidative stress in plants, J. Exp. Bot., 53: 1331–1341 http://dx.doi.org/10.1093/jexbot/53.372.1331 Search in Google Scholar

[3] Bailly C., Benamar A., Corbineau F., Come D., 1996, Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seed as related to deterioration during accelerated aging, Physiol. Plantarum, 97: 104–110 http://dx.doi.org/10.1111/j.1399-3054.1996.tb00485.x Search in Google Scholar

[4] Bayen S., Wurl O., Karuppiah S., Sivasothi N., Lee H.K., Obbard J.P., 2005, Persistent organic pollutants in mangrove food webs in Singapore, Chemosphere, 61: 303–313 http://dx.doi.org/10.1016/j.chemosphere.2005.02.097 Search in Google Scholar

[5] Beauchamp C., Fridovich I., 1971, Superoxide dismutase: improved assays and an assay applicable to acrylamide gels, Anal. Biochem., 44: 276–287 http://dx.doi.org/10.1016/0003-2697(71)90370-8 Search in Google Scholar

[6] Bradford M.M., 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding, Anal. Biochem., 72: 248–254 http://dx.doi.org/10.1016/0003-2697(76)90527-3 Search in Google Scholar

[7] Candan N., Tarhan L., 2003, Relationship among chlorophyll-carotenoid content, antioxidant enzyme activities and lipid peroxidation levels by Mg 2+deficiency in the Mentha pulegium leaves, Plant Physiol. Bioch., 41: 35–40 http://dx.doi.org/10.1016/S0981-9428(02)00006-2 Search in Google Scholar

[8] Chen J.X., Wang X.F., 2006, The Laboratory Illustration of Plant Physiology, South China University of Techonology Press, Guang Zhou Search in Google Scholar

[9] Chen J., Wong M.H., Wong Y.S., Tam N.F.Y., 2008, Multi-factors on biodegradation kinetics of polycyclic aromatic hydrocarbons (PAHs) by Sphingomonas sp. a bacterial strain isolated from mangrove sediment, Mar. Pollut. Bull., 57: 695–702 http://dx.doi.org/10.1016/j.marpolbul.2008.03.013 Search in Google Scholar

[10] Chiang D.A., Lin N.P., 2000, Partial correlation of fuzzy sets, Fuzzy Set Syst., 110: 209–215 http://dx.doi.org/10.1016/S0165-0114(98)00081-5 Search in Google Scholar

[11] Duke N.C., Watkinson A.J., 2002, Chlorophyll-deficient propagules of Avicennia marina and apparent longer term deterioration of mangrove fitness in oil-polluted sediments, Mar. Pollut. Bull., 44:1269–1276 http://dx.doi.org/10.1016/S0025-326X(02)00221-7 Search in Google Scholar

[12] Dutrieux E., Martin F., Debry A., 1990, Growth and mortality of Sonneratia caseolaris planted on an experimentally oil-polluted soil, Mar. Pollut. Bull., 21: 62–68 http://dx.doi.org/10.1016/0025-326X(90)90189-F Search in Google Scholar

[13] Flowers-Geary L., Bleczinski W., Harvey R.G., Penning M.T., 1996, Cytotoxicity and mutagenicity of polycyclic aromatic hydrocarbon oquinones produced by dihydrodiol dehydrogenase, Chemico-Biol. Interact., 99: 55–72 http://dx.doi.org/10.1016/0009-2797(95)03660-1 Search in Google Scholar

[14] Fridovich I., 1986, Biological effects of the superoxide radical, Arch. Biochem. Biophys., 247: 1–11 http://dx.doi.org/10.1016/0003-9861(86)90526-6 Search in Google Scholar

[15] Gao Y., Zhu L., 2004, Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils, Chemosphere, 55: 1169–1178 http://dx.doi.org/10.1016/j.chemosphere.2004.01.037 Search in Google Scholar

[16] Gill S.S., Tuteja N., 2010, Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants, Plant Physiol. Bioch., 48: 909–930 http://dx.doi.org/10.1016/j.plaphy.2010.08.016 Search in Google Scholar

[17] Hare P.D., Cress W.A., 1997, Metabolic implications of stress-induced proline accumulation in plants, Plant Growth Regul., 21: 79–102 http://dx.doi.org/10.1023/A:1005703923347 Search in Google Scholar

[18] Imlay J.A., Linn S., 1988, DNA damage and oxygen radical toxicity, Science, 240: 1302–1309 http://dx.doi.org/10.1126/science.3287616 Search in Google Scholar

[19] Jaleel C.A., Riadh K., Gopi R., Manivanan P., Inès J., Al-Juburi H.J., Chang-Xing Z., Hong-Bo S., Panneerselvam R., 2009, Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints, Acta Physiol. Plant, 31: 427–436 http://dx.doi.org/10.1007/s11738-009-0275-6 Search in Google Scholar

[20] Ke L., Wang W.Q., Wong T.W.Y., Wong Y.S., Tam N.F.Y., 2003a, Removal of pyrene from contaminated sediments by mangrove microcosms, Chemosphere, 51: 25–34 Search in Google Scholar

[21] Ke L., Wong T.W.Y., Wong A.H.Y., Wong Y.S., Tam N.F.Y., 2003b, Negative effects of humic acid addition on phytoremediation of pyrene-contaminated sediments by mangrove seedlings, Chemosphere, 52: 1581–1591 http://dx.doi.org/10.1016/S0045-6535(03)00498-3 Search in Google Scholar

[22] Ke L., Yu K.S.H., Wong Y.S., Tam N.F.Y., 2005, Spatial and vertical distribution of polycyclic aromatic hydrocarbons in mangrove sediments, Sci. Total Environ., 340: 177–187 http://dx.doi.org/10.1016/j.scitotenv.2004.08.015 Search in Google Scholar

[23] Ke L., Bao W., Chen L., Wong Y.S., Tam N.F.Y., 2009, Effects of humic acid on solubility and biodegradation of polycyclic aromatic hydrocarbons in liquid media and mangrove sediment slurries, Chemosphere, 76: 1102–1108 http://dx.doi.org/10.1016/j.chemosphere.2009.04.022 Search in Google Scholar

[24] Klekowski E.J. Jr., Corredor J.E., Morell J.M., del Castillo C.A., 1994, Petroleum pollution and mutation in mangroves, Mar. Pollut. Bull., 28: 166–169 http://dx.doi.org/10.1016/0025-326X(94)90393-X Search in Google Scholar

[25] Landis W.G., Matthews G.B., Matthews R.A., Sergeant A., 1994, Application of multivariate techniques to endpoint determination, selection and evaluation in ecological risk assesement, Environ. Toxicol. Chem., 13:1917–1927 http://dx.doi.org/10.1002/etc.5620131207 Search in Google Scholar

[26] Ledford H.K., Niyogi K.K., 2005, Siglet oxygen and photo-oxidative stress management in plants and algae, Plant Cell Environ., 28: 1037–1045 http://dx.doi.org/10.1111/j.1365-3040.2005.01374.x Search in Google Scholar

[27] Li B., Wei J., Wei X., Tang K., Liang Y., Shu K., Wang B., 2008, Effect of sound wave stress on antioxidant enzyme activities and lipid peroxidation of Dendrobium candidum, Colloids Surface B., 63: 269–275 http://dx.doi.org/10.1016/j.colsurfb.2007.12.012 Search in Google Scholar

[28] Liao Y., Chen G.Z., 2007, Physiological adaptability of three mangrove species to salt stress, Acta Ecologica Sinica, 2: 2208–2214 Search in Google Scholar

[29] Lin C.C., Kao C.H., 2000, Effect of NaCl stress on H 2O2metabolism in rice leaves, Plant Growth Regul., 30:151–155 http://dx.doi.org/10.1023/A:1006345126589 Search in Google Scholar

[30] Liu H., David W., Ye Y., Cui B., Huang Y.H., Colón-Carmona A., Wang Z.H., 2009, An oxidative stress response to polycyclic aromatic hydrocarbon exposure is rapid and complex in Arabidopsis thaliana, Plant Sci., 176: 375–382 http://dx.doi.org/10.1016/j.plantsci.2008.12.002 Search in Google Scholar

[31] Liu J.W., Lin F.K., Wang Y., Xu Z., Zhang X., 2002, Effects of PAHs (naphthalene) Pollution on the Physiological Index of Hydrophyte, Journal of East China University of Science and Technology, 28: 520–536 (In Chinese with English summary) Search in Google Scholar

[32] Liu Y.Y., Sun H.B., Chen G.Z., Zhao B., Li W.Y., 2007, Eco-physiological responses of Kandelia candel seedlings to polychlorinated biphenyls (PCBs) treatment, Acta Ecologica Sinica 27: 746–754 http://dx.doi.org/10.1016/S1872-2032(08)60011-6 Search in Google Scholar

[33] Long E.R., Macdonald D.D., Smith S.L., Calder F.D., 1995, Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments, Environ. Manage., 19: 81–97 http://dx.doi.org/10.1007/BF02472006 Search in Google Scholar

[34] McCann J.H., Greenberg B.M., Solomon K.R., 2000, The effect of creosote on the growth of an axenic culture of Myriophyllum spicatum L., Aquat. Toxicol., 50: 265–274 http://dx.doi.org/10.1016/S0166-445X(99)00096-X Search in Google Scholar

[35] McCann J.H., Solomon K.R., 2000, The effect of creosote on membrane ion leakage in Myriophyllum spicatum L., Aquat. Toxicol., 50, 275–284 http://dx.doi.org/10.1016/S0166-445X(00)00105-3 Search in Google Scholar

[36] Mittler R., 2002, Oxidative stress, antioxidants and stress tolerance, Trends Plant Sci., 7: 405–410 http://dx.doi.org/10.1016/S1360-1385(02)02312-9 Search in Google Scholar

[37] Olsen G.H., Carroll M.L., Renaud P.E., Ambrose W.G.Jr., Olssøn R., Carroll J.L., 2007, Benthic community response to petroleum-associated components in Arctic versus temperate marine sediments, Mar. Biol., 151: 2167–2176 http://dx.doi.org/10.1007/s00227-007-0650-z Search in Google Scholar

[38] Parida A., Das A.B., Das P., 2002, NaCI stress causes changes in photosynthetic pigments, proteins, and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures, J. Plant Biol., 53: 259–267 Search in Google Scholar

[39] Rodríguez-Ortega M.J., Rodríguez-Ariza A., Gómez-Ariza J.L., Muñoz-Serrano A., López-Barea J., 2009, Multivariate discriminant analysis distinguishes metal-from non metal-related biomarker responses in the clam Chamaelea gallina, Mar. Pollut. Bull., 58:64–71 http://dx.doi.org/10.1016/j.marpolbul.2008.09.006 Search in Google Scholar

[40] Saradhi P.P., AliaArora A.S., Prasad K.V.S.K., 1995, Proline accumulates in plants exposed to UV radiation and protects them against UV-induced peroxidation, Biochem. Bioph. Res. Co., 209: 1–5 http://dx.doi.org/10.1006/bbrc.1995.1461 Search in Google Scholar

[41] Shetty P., Atallah M.T., Shetty K., 2002, Effects of UV treatment on the proline-linked pentose phosphate pathway for phenolics and L-DOPA synthesis in dark germinated Vicia faba, Process Biochem., 37: 1285–1295 http://dx.doi.org/10.1016/S0032-9592(02)00013-4 Search in Google Scholar

[42] Singh S., Saxena R., Pandey K., Bhatt K., Sinha S., 2004, Response of antioxidants in sunflower (Helianthus annuus L.) grown on different amendments of tannery sludge: its metal accumulation potential, Chemosphere, 57: 1663–1673 http://dx.doi.org/10.1016/j.chemosphere.2004.07.049 Search in Google Scholar

[43] Sinha S., Basant A., Malik A., Singh K., 2009, Multivariate modeling of chromium-induced oxidative stress and biochemical changes in plants of Pistia stratiotes L, Ecotoxicology, 18: 555–566 http://dx.doi.org/10.1007/s10646-009-0313-6 Search in Google Scholar

[44] Tam N.F.Y., Ke L., Wang X.H., Wong Y.S., 2001, Contamination of polycyclic aromatic hydrocarbons in surface sediments of mangrove swamps, Environ. Pollut. 114: 255–263 http://dx.doi.org/10.1016/S0269-7491(00)00212-8 Search in Google Scholar

[45] Tam N.F.Y., 2006, Pollution Studies on Mangroves in Hong Kong and Mainland China, Springer Netherlands Search in Google Scholar

[46] Tian Y., Luo Y.R., Zheng T.L., Cai L.Z., Cao X.X., Yan C.L., 2008, Contamination and potential biodegradation of polycyclic aromatic hydrocarbons in mangrove sediments of Xiamen, China, Mar. Pollut. Bull., 56: 1184–1191 http://dx.doi.org/10.1016/j.marpolbul.2008.02.014 Search in Google Scholar

[47] Wieczorek J.K., Wieczorek Z.J., 2007, Phytotoxicity and accumulation of anthracene applied to the foliage and sandy substrate in lettuce and radish plants, Ecotoxicol. Environ. Saf., 66: 369–377 http://dx.doi.org/10.1016/j.ecoenv.2005.10.002 Search in Google Scholar

[48] Willekens H., Chamnongpol S., Davey M., Schraudner M., Langebartels C., Van Montaqu M., Inzé D., Van Camp W., 1997, Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants EMBO J.,, 16: 4806–48 http://dx.doi.org/10.1093/emboj/16.16.4806 Search in Google Scholar

[49] Wu Y., Chen Y., Yi Y., Shen Z., 2009, Responses to copper by the moss Plagiomnium cuspidatum: Hydrogen peroxide accumulation and the antioxidant defense system, Chemosphere, 74:1260–1265 http://dx.doi.org/10.1016/j.chemosphere.2008.10.059 Search in Google Scholar

[50] Xin M., Dao-hui L., Yi X., Yuan-yuan W., You-ying T., 2009, Effects of phenanthrene on chemical composition and enzyme activity in fresh tea leaves, Food Chem., 115: 569–573 http://dx.doi.org/10.1016/j.foodchem.2008.12.053 Search in Google Scholar

[51] Yong Y.E., Tam N.F.Y., 2007, Effects of used lubricating oil on two mangroves Aegiceras corniculatum and Avicennia marina, J. Environ. Sci., 19: 1355–1360 http://dx.doi.org/10.1016/S1001-0742(07)60221-6 Search in Google Scholar

[52] Yu K.S.H., Wong A.H.Y., Yau K.W.Y., Wong Y.S., Tam N.F.Y., 2005a, Natural attenuation, biostimulation and bioaugmentation on biodegradation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments, Mar. Pollut. Bull., 51: 1071–1077 http://dx.doi.org/10.1016/j.marpolbul.2005.06.006 Search in Google Scholar

[53] Yu S.H., Ke L., Wong Y.S., Tam N.F.Y., 2005b, Degradation of polycyclic aromatic hydrocarbons (PAHS) by a bacterial consortium enriched from mangrove sediments, Environ. Int., 31: 149–154 http://dx.doi.org/10.1016/j.envint.2004.09.008 Search in Google Scholar

[54] Zhang D.Z., Wang P.H., Zhao H.X., 1990, Determination of the content of free proline in wheat leaves, Plant Phys. Commun., 4: 62–65 Search in Google Scholar

[55] Zhang J., Cai L., Yuan D., Chen M., 2004, Distribution and sources of polynuclear aromatic hydrocarbons in Mangrove surficial sediments of Deep Bay, China, Mar. Pollut. Bull., 49: 479–486 http://dx.doi.org/10.1016/j.marpolbul.2004.02.030 Search in Google Scholar

[56] Zhang C.G., Leung K.K., Wong Y.S., Tam N.F.Y., 2007a, Germination, growth and physiological responses of mangrove plant (Bruguiera gymnorrhiza) to lubricating oil pollution, Environ. Exp. Bot., 60: 127–136 http://dx.doi.org/10.1016/j.envexpbot.2006.09.002 Search in Google Scholar

[57] Zhang F.Q., Wang Y.S., Lou Z.P., Dong J.D., 2007b, Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza), Chemosphere, 67: 44–50 Search in Google Scholar

[58] Zhang L.Z., Wei N., Wu Q.X., Ping M.L., 2007c, Anti-oxidant response of Cucumis sativus L. to fungicide carbendazim, Pestic. BioChem. Phys., 89: 54–59 http://dx.doi.org/10.1016/j.pestbp.2007.02.007 Search in Google Scholar

[59] Zhao S.J., Xu C.C., Zou Q., Meng Q.W., 1994, Improvements of method for measurement of malondialdehyde in plant tissues, Plant Phys. Commun., 30: 207–210 Search in Google Scholar

[60] Zheng G.J., Man B.K.W., Lam J.C.W., Lam M.H.W., Lam P.K.S., 2002, Distribution and sources of polycyclic aromatic hydrocarbons in the sediment of a sub-tropical coastal wetland, Water Res., 36: 1457–1468 http://dx.doi.org/10.1016/S0043-1354(01)00363-3 Search in Google Scholar

[61] Zhou H.W., Luan T.G., Zou F., Tam N.F.Y., 2008, Different bacterial groups for biodegradation of three- and four-ring PAHs isolated from a Hong Kong mangrove sediment, J. Hazard. Mater., 152: 1179–1185 http://dx.doi.org/10.1016/j.jhazmat.2007.07.116 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo