1. bookVolume 10 (2008): Issue 2 (January 2008)
Journal Details
License
Format
Journal
First Published
03 Jul 2007
Publication timeframe
4 times per year
Languages
English
access type Open Access

Uptake of phenol from aqueous solution by burned water hyacinth

Journal Details
License
Format
Journal
First Published
03 Jul 2007
Publication timeframe
4 times per year
Languages
English

The potential of burned water hyacinth (BWH) for phenol adsorption from aqueous solution was studied. Batch kinetic and isotherm studies were carried out under varying experimental conditions of contact time, phenol concentration, adsorbent dosage and pH. The pH at the point of zero charge (pHPZC) of the adsorbent was determined by the titration method and the value of 8.8 ± 0.2 was obtained. The FTIR of the adsorbent was carried out in order to find the potential adsorption sites for the interaction with phenol molecules. The Freundlich and Langmuir adsorption models were used for the mathematical description of adsorption equilibrium and it was found that the experimental data fitted very well to the Langmuir model. Maximum adsorption capacity of the adsorbent was found to be 30.49 mg/g. Batch adsorption models, based on the assumption of the pseudo-first-order and pseudo-second-order models, were applied to examine the kinetics of the adsorption. The results showed that kinetic data closely followed the pseudo-second-order model.

Keywords

Mostafa, M. R., Sarma, S. E. & Yousef, A. M. (1989). Removal of organic pollutants from aqueous solution: Part 1. Adsorption of phenols by activated carbon. Ind. J. Chem. 28A, 946-1948.Search in Google Scholar

Dutta, N. N., Patil, G. S. & Brothakur, S. (1992). Phase transfer catalyzed extraction of phenolic substances from aqueous alkaline stream. Sep. Sci. Technol., 27 (11), 1435-1448. DOI: 10.1080/01496399208019435.Search in Google Scholar

El- Geundi, M. S. (1997). Adsorbents for industrial pollution control. Adsorp. Sci. Technol., 15 (10), 777-787.Search in Google Scholar

McKay, G., Prasad, G. R. & Mowli, P. R. (1986). Equilibrium studies for the adsorption of dyestuffs from aqueous solutions by low-cost materials. Water, Air Soil Poll. 29 (3), 273-283. DOI: 10.1007/BF00158759.Search in Google Scholar

Mohanty, K., Das, D. & Biswas, M. N. (2005). Adsorption of phenol from aqueous solutions using activated carbons prepared from Tectona grandis sawdust by ZnCl2 activation. Chem. Eng. J. 115(1-2) 121-131. DOI: 10.1016/j.cej.2005.09.016.Search in Google Scholar

Dursun, G., Cicek, H. & Dursun, A. Y. (2005). Adsorption of phenol from aqueous solution by using carbonized beet pulp. J. Hazard. Mater. B125 (1-3), 175-182. DOI: 10.1016/j.jhazmat.2005.05.023.Search in Google Scholar

Dursun, A. Y. & Kalayci, C. S. (2005). Equilibrium, Kinetic and thermodynamic studies on adsorption of phenol onto chitin. J. Hazard. Mater. B123 (1-3), 151-157. DOI: 10.1016/j.jhazmat.2005.03.034.Search in Google Scholar

Al-Asheh, S. A., Banat, F. & Aitah, L. A. (2003). Adsorptioon of phenol using different types of activated bentonites. Sep. Purif. Technol. 33 (1), 1-10. DOI: 10.1016/ S1383-5866(02)00180-6.Search in Google Scholar

Vigiraraghavan, T. & Alfaro, F. M. (1998). Adsorption of phenol from wastewater by peat, fly ash and bentonite. J. Hazard. Mater. 57 (1-3), 59-70. DOI: 10.1016/S0304-3894(97)00062-9.Search in Google Scholar

Banat, F. A., Al-Bashir, B., Al-asheh, S. & Hayajneh, O.(2000). Adsorption of phenol by bentonite. Environ. Poll. 107 (3), 391-398. DOI:10.101/S0269-7491(99)00173-6.Search in Google Scholar

Roostaei, N. & Tezel, F. H. (2004). Removal of phenol from aqueous solutions by Adsorption. J. Environ. Manage. 70 (2), 157-164. DOI:10.101/j.jenvman.2003.11.004.Search in Google Scholar

Bekkouche, S., Bouhelassa, M., Salah, N. H. & Meghlaoui, F. Z. (2004). Study of adsorption of phenol on titanium oxide (TiO2). Desalination, 166, 355-362. DOI:10.1016/j.desal.2004.06.090.Search in Google Scholar

Nakagawa, K., Namba, A., Mukai, S. R., Tamon, H., Ariyadejwanich, P. & Tanthapanichakoon, W. (2004). Adsorption of phenol and reactive dye from aqueous solution on activated carbons derived from solid wastes. Water Res. 38 (7), 1791-1798. DOI: 10.1016/j.watres.2004.01.002.Search in Google Scholar

Tancredi, N., Medero, N., Möller, F., Piriz, J., Plada, C. & Cordero, T. (2004). Phenol adsorption onto powdered and granular activated carbon, prepared from Eucalyptus wood. J. Colloid Interf. Sci. 279 (2), 357-363. DOI:10.1016/j.jis. 2004.06.067.Search in Google Scholar

Tanthapanichakoon, W., Ariyadejwanich, P., Japthong, P., Nakagawa, K., Mukai, S. R. & Tamon, H., (2005). Adsorption- desorption characteristics of phenol and reactive dyes from aqueous solution on mesoporous activated carbon prepared from waste tires. Water Res. 39 (7), 1347-1351. DOI: 10.1016/j.watres.2004.12.044.Search in Google Scholar

Rao, M., Parwate, A. V. & Bhole, A. G. (2002). Removal of Cr6+ and Ni2+ from aqueous solution using bagasse and fly ash. Waste Manage. 22 (7), 821-830. DOI:10.1016/S0956053X(02)00011-9.Search in Google Scholar

Akbal, F. (2005). Sorption of phenol and 4- chlorophenol onto pumice treated with cationic surfactant. J. Environ. Manage.74 (3), 239-244. DOI:10.1016/j.jenvman.2004.10.001Search in Google Scholar

Calace, N., Nardi, E., Petronio B. M. & Pietroletti, M. (2002). Adsorption of phenols by papermill sludges. Environ. Poll. 118 (3), 315-319. DOI: 10.1016/S0269-7491(01)00303-7.Search in Google Scholar

El-Sayed, A. M. (2003). Effects of fermentation methods on the nutritive value of water hyacinth for Nile tilapia. Oreochromis niloticus (L.) fingerlings, Aquaculture, 218 (1-4), 471-478. DOI: 10.1016/S0044-8486(02)00252-1.Search in Google Scholar

Ganesh, P. S., Ramasamy, E. V., Gajalakshmi, S. & Abbasi, S. A. (2005). Extraction of volatile fatty acids (VFAs) from water hyacinth using inexpensive contraptions, and the use of the VFAs as feed supplement in conventional biogas digesters with concomitant final disposal of water hyacinth as vermicompost. Biochem. Eng. J. 27 (1), 17-23. DOI: 10.1016/j.bej.2005.06.010.Search in Google Scholar

Grandi, A. (1981). Use of Water Hyacinth in diets for rabbits. Coniglicol. 18, 43-48.Search in Google Scholar

Kiefer, E., Sigg, L., & Schosseler, P. (1997). Chemical and spectroscopic charactirization of algae Surfaces. Environ. Sci. Technol. 31(3), 759-764. DOI: 10.1021/es960415d.Search in Google Scholar

Vadivelan, V., & Kumar, K. V., (2005). Equilibrium, kinetics, mecknism, and process design for the sorption of methylene blue onto rice hush. J. Colloid Interf. Sci. 286 (1), 90-100. DOI: 10.1016/j.jcis.2005.01.007.Search in Google Scholar

Weber, T. W. & Chakraborti, R. K. (1974). Pore and solid diffusion models for fixed bed adsorbers. J. Am. Ins. Chem. Eng. 20, 228-236.Search in Google Scholar

Ahmaruzzaman, M., & Sharma, D. K. (2005). Adsorption of phenols from wastewater. J. Colloid Interf. Sci. 287 (1), 14-24. DOI: 10.1016/j.jcis.2005.01.075.Search in Google Scholar

Tor, A., Cengeloglu, Y., Aydin, M. E., & Ersoz, M. (2006). Removal of phenol from aqueous phase by using neutralized red mud. J. Colloid Interf. Sci. 300 (2), 498-503. DOI: 10.1016/j.jcis.2006.04.054.Search in Google Scholar

Uddin, M. T., Islam, M. S., Islam M. A. & Abedin, M. Z. (2006). Removal of phenol from aqueous solution by rice husk ash. Bangladesh J Environ. Sci. 12 (2), 344-347.Search in Google Scholar

Vazquez, I., Rodriguez-Iglesias, J., Maranon, E., Castrillon, L., & Alvarez, M. (2007). Removal of residual phenols from coke wastewater by adsorption. J. Hazard. Mater. 147 (1-2), 395-400. DOI: 10.1016/j.jhazmat.2007.01.019.Search in Google Scholar

Lagergren, S. (1898). Zur theorie der sogenannten adsorption geloster stoffe, Kungliga Svenska Vetenkapsakademiens. Handl. 24, 1-39.Search in Google Scholar

Ho, Y. S., & Mckay, G. (1999). Pseudo-second-order model for sorption process. Process Biochem. 34 (5), 451-465. DOI: 10.1016/S0032-9592(98)00112-5.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo