1. bookVolume 14 (2012): Issue 4 (December 2012)
Journal Details
License
Format
Journal
eISSN
1899-4741
ISSN
1509-8117
First Published
03 Jul 2007
Publication timeframe
4 times per year
Languages
English
access type Open Access

Artificial neural network to predict the natural convection from vertical and inclined arrays of horizontal cylinders

Published Online: 12 Jan 2013
Volume & Issue: Volume 14 (2012) - Issue 4 (December 2012)
Page range: 46 - 52
Journal Details
License
Format
Journal
eISSN
1899-4741
ISSN
1509-8117
First Published
03 Jul 2007
Publication timeframe
4 times per year
Languages
English
Abstract

The main focus of the present study is to utilize the artificial neural network (ANN) in predicting the natural convection from horizontal isothermal cylinders arranged in vertical and inclined arrays. The effects of the vertical separation spacing to the cylinder diameter ratio (Py/d), horizontal separation spacing to the cylinder diameter ratio (Px/d) and Rayleigh number (Ra) variation on the average heat transfer from the arrays are considered via this prediction. The training data for optimizing the ANN structure is based on available experimental data. The Levenberg-Marquardt back propagation algorithm is used for ANN training. The proposed ANN is developed using MATLAB functions. For the best ANN structure obtained in this investigation, the mean relative errors of 0.027% and 0.482% were reached for the training and test data, respectively. The results show that the predicted values are very close to the experimental ones.

Keywords

1. Kuehn, T.H. & Goldstein, R.J. (1980).Numerical solution to the Navier-Stokes equations forlaminar natural convection about a horizontal isothermal circular cylinder.Int. J. Heat MassTransfer. 23(7), 971-979.DOI:10.1016/0017-9310(80)90071-X.10.1016/0017-9310(80)90071-XSearch in Google Scholar

2. Wang, P., Kahawita, R. & Nguyen, T.H. (1990).Numerical computation of the natural convection flow about a horizontal cylinder using splines. Num. Heat Transfer. 17(2), 191-215. DOI:10.1080/10407789008944739.10.1080/10407789008944739Search in Google Scholar

3. Saitoh, T., Sajiki, T. & Maruhara, K. (1993). Bench mark solutions to natural convection heat transfer problem around a horizontal circular cylinder.Int. J. Heat Mass Transfer; 36(5), 1251-1259. DOI: 10.1016/S0017-9310(05)80094-8.10.1016/S0017-9310(05)80094-8Search in Google Scholar

4. Corcione, M. (2005). Correlating equations for free convection heat transfer from horizontal isothermal cylinders set in a vertical array.Int. J. Heat Mass Transfer. 48(17), 3660-3673. DOI:10.1016/j.ijheatmasstransfer.2005.01.010.10.1016/j.ijheatmasstransfer.2005.01.010Search in Google Scholar

5. Eckert, E.R.G. & Soehngen, E.E. (1948).Studies on heat transfer in laminar free convection with the Zehnder-Mach interferometer.AF Technical Report, 5747, USAF Air Material Command, Wright-Paterson Air Force Base, Ohio.Search in Google Scholar

6. Tokura, I., Saito, H., Kisinami, K. & Muramoto, K. (1983). An experimental study of free convection heat transfer from a horizontal cylinder in a vertical array set in free space between parallel walls. J. heat Transfer. 105, 102-107.10.1115/1.3245526Search in Google Scholar

7. Marsters, G.F. (1972).Array of heated horizontal cylinders in natural convection. Int. J. Heat Mass Transfer. 15(5), 921-933. DOI:10.1016/0017-9310(72)90231-1.10.1016/0017-9310(72)90231-1Search in Google Scholar

8. Lieberman, J. & Gebhart, B. (1969).Interaction in natural convection from an array of heated elements, experimental. Int.J. Heat Mass Transfer. 12(11), 1385-1396. DOI: 10.1016/0017- 9310(69)90023-4.Search in Google Scholar

9. Rezvantalab, H., Ghazian, O., Yousefi, T. & Ashjaee, M. (2011). Effect of flow diverters on free convection heat transfer from a pair of vertical arrays of isothermal cylinders. Experimental Thermal and Fluid Science. 35(7), 1398-1408. DOI: 10.1016/j.expthermflusci.2011.05.008.10.1016/j.expthermflusci.2011.05.008Search in Google Scholar

10. Ashjaee, M. & Yousefi, T. (2007). Experimental Study of Free Convection Heat Transfer from Horizontal Isothermal Cylinders Arranged in Vertical and Inclined Arrays. J. Heat TransferEngineering.28(5),460-471.DOI: 10.1080/01457630601165822.10.1080/01457630601165822Search in Google Scholar

11. Sozen, A. & Arcaklioglu, E. (2007).Exergy analysis of an ejector-absorption heat transformer using artificial neural network approach. Appl. Therm. Eng. 27(2-3), 481-491.DOI: 10.1016/j.applthermaleng.2006.06.012.10.1016/j.applthermaleng.2006.06.012Search in Google Scholar

12. Deng, S. & Hwang, Y. (2006).Applying neural networks to the solution of forward and inverse heat conduction problems. Int. J. of Heat and Mass Transfer.49(25-26), 4732-4750. DOI: 10.1016/j.ijheatmasstransfer.2006.06.009.10.1016/j.ijheatmasstransfer.2006.06.009Search in Google Scholar

13. Zdaniuk, G.J., Chamra, L.M. & Walters, D.K. (2007).Correlating heat transfer and friction in helically-finned tubes using artificial neural networks.Int. J. of Heat and Mass Transfer 50(23- 24), 4713-4723. DOI: 10.1016/j.ijheatmasstransfer.2007.03.043.10.1016/j.ijheatmasstransfer.2007.03.043Search in Google Scholar

14. Scalabrin, G. & Piazza, L. (2003).Analysis of forced convection heat transfer to supercritical carbon dioxide inside tubes using neural networks. Int. J. of Heat and Mass Transfer 46(7), 1139-1154.DOI: 10.1016/S0017-9310(02)00382-4.10.1016/S0017-9310(02)00382-4Search in Google Scholar

15. Diaz, G., Sen, M., Yang, K.T. & McClain, R.L. (2001). Dynamic prediction and control of heat exchangers using artificial neural networks. Int. J. of Heat and Mass Transfer.44(9), 1671-1679. DOI: 10.1016/S0017-9310(00)00228-3.10.1016/S0017-9310(00)00228-3Search in Google Scholar

16. Chen, J., Wang, Kuan-Po. & Liang, M-Tsai. (2005).Predictions of heat transfer coefficients of supercritical carbon dioxide using the overlapped type of local neural network. Int.J. of Heat and Mass Transfer.48(12), 2483-2492. DOI:10.1016/j. ijheatmasstransfer.2004.12.040.Search in Google Scholar

17. Hernández, J.A., Romero, R.J., Juárez, D., Escobar, R.F. & Siqueiros, J. (2009). A neural network approach and thermodynamic model of waste energy recovery in a heat transformer in a water purification process.Desalination. 243(1- 3), 273-285. DOI: 10.1016/j.desal.2008.05.015.10.1016/j.desal.2008.05.015Search in Google Scholar

18. Hauf, W. & Grigull, U. (1970). Optical methods in heat transfer. Advances in Heat Transfer. 6, Academic Press, New York, 133-366.10.1016/S0065-2717(08)70151-5Search in Google Scholar

19. Eckert, E.E.R.G. & Goldstein, R.J. (1972). Measurements in Heat Transfer.second edition, McGraw-Hill, New York, 241-293.Search in Google Scholar

20. Karami, A., Rezaei, E., Shahhosseni, M. & Aghakhani, M. (2012). Fuzzy logic to predict the heat transfer in an air cooler equipped with different tube inserts. Int. J. of Therm. Sci. 53, 141-147. DOI: 10.1016/j.ijthermalsci.2011.10.016.10.1016/j.ijthermalsci.2011.10.016Search in Google Scholar

21. Rezaei, E., Karami, A.,Yousefi, T. & Mahmoudinezhad, S. (2012).Modeling the free convection heat transfer in a partitioned cavity using ANFIS, Int. Communications in Heatand Mass Transfer. 39(3), 470-475.DOI: 10.1016/j.icheatmasstransfer. 2011.12.006.Search in Google Scholar

22. Minai, A.A. & Williams R.D. (1990). Acceleration of back propagation through learning rate and momentum adaptation. International joint conference on neural networks; 1, 676-9.Search in Google Scholar

23. Neural Computing, (1996). A technology handbook for professional II/ PLUS and neural works explorer,. Pittsburgh: Neural Ware Inc, Technical Publications Group.Search in Google Scholar

24. Haykin, S.(1994). Neural networks: a comprehensive foundation, New York: Macmillan College Publishing Company; ISBN 0-02352761-7.Search in Google Scholar

25. Hammouda, HB,.Mhiri, M., Gafsi, Z., Besbes, K. (2008). Neural-based models ofsemiconductor devices for HSPICE Simulation. Am. J. Appl.Sci. 5(4), 385-391.DOI: 10.3844/ ajassp.2008.385.391.10.3844/ajassp.2008.385.391Search in Google Scholar

26. Shirvany, Y., Hayati, M., Moradian, R. (2008).Numerical solution of the nonlinear Schrodinger equationbyfeedforward neural networks.Communications in Nonlinear Science andNumerical Simulation. 13(10), 2132-2145. DOI: 10.1016/j. cnsns.2007.04.024.Search in Google Scholar

27. Gallant, AR. & White, H. (1992).On learning the derivatives of an unknown mappingwith multilayer feed forward networks. Elsevier Science.5, 129-38.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo