1. bookVolume 20 (2008): Issue 2008 (January 2008)
Journal Details
First Published
13 Jan 2009
Publication timeframe
5 times per year
access type Open Access

Plasticity of the Cortical Motor System

Published Online: 13 Jan 2009
Page range: 5 - 22
Journal Details
First Published
13 Jan 2009
Publication timeframe
5 times per year

The involvement of brain plastic mechanisms in the control of motor functions under normal and pathological conditions is described. These mechanisms are based on a similar principle as the neuronal models of neuronal plasticity - long-term potentiation (LTP), and long-term depression (LTD). In the motor cortex, LTP-like phenomena play a role in strengthening synaptic connections between pyramidal neurons. LTD is important for the elimination of unnecessary inputs to the cortex. The dynamic features of the primary motor cortex activity depend on particular neuronal interconnectivity within this area. The pyramidal cells send horizontal collaterals to adjacent subregions of the primary motor cortex, and so can either excite or inhibit remote pyramidal cells. These connections can expand or shrink depending on actual physiological demands, and play a role in skill learning.


Buonomano D. V., Merzenich M. M. Cortical plasticity: from synapses to maps. Annual Review of Neuroscience, 1998. 21:149-186.Search in Google Scholar

Cauraugh J. H., Summers J. J. Neural plasticity and bilateral movements: a rehabilitation approach for chronic stroke. Progress in Neurobiology, 2005. 75: 309-320.Search in Google Scholar

Chen J., Magavi S. S. P., Macklis J. D. Neurogenesis of corticospinal motor neurons extending spinal projections in adult mice Proceedings of the National Academy of Sciences USA, 2004. 95 101: 16357-16362.Search in Google Scholar

Chen R., Gerloff C., Hallett M., Cohen L. G. Involvement of the ipsilateral motor cortex in finger movements of different complexities. Annals of Neurology, 1997. 41: 247-254.Search in Google Scholar

Cramer S. C., Nelles G., Benson R. R., Kaplan J. D., Parker R. A., Kwong K. K., Kennedy D. N., Finklestein S. P., Rosen B. R. A functional MRI study of subjects recovered from hemiparetic stroke. Stroke, 1997. 28:2518-2527.Search in Google Scholar

Elbert T., Pantev C., Wienbruch C., Rockstroh B., Taub E. Increased cortical representation of the fingers of the left hand in string players. Science, 1995. 270: 305-307.Search in Google Scholar

Fridman E. A., Hanakawa T., Chung M., Hummel F., Leiguarda R. C., Cohen L. G. Reorganization of the human ipsilesional premotor cortex after stroke. Brain, 2004. 127: 747-758.Search in Google Scholar

Gauthier L. V., Taub E., Perkins Ch., Ortmann M., Mark V. W., Uswatte G. Remodeling the brain plastic structural brain changes produced by different motor therapies after stroke. Stroke, 2008. 39:1520-1525.Search in Google Scholar

Harris-Love M. L., Cohen L. G. Noninvasive cortical stimulation in neurorehabilitation: a review. Archives of Physical Medicine and Rehabilitation, 2006. 87, Supplement 2: S84 - S92.Search in Google Scholar

Hebb D. O. The organization of behavior: a neuropsychological theory. 1949. Wiley, New York.Search in Google Scholar

Hummel F., Celnik P., Giraux P., Floel A., Wu W.-H., Gerloff Ch., Cohen L. G. Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain, 2005. 128: 490-499.Search in Google Scholar

Jin K., Wang X., Xie L., Mao X. O., Zhu W., Zhu W., Wang Y., Shen J., Mao Y., Banwait S., Greenberg D. A. Evidence for stroke-induced neurogenesis in the human brain. Proceedings of the National Academy of Sciences USA, 2006. 103: 13198-13202.Search in Google Scholar

Karni A., Meyer G., Rey-Hipolito Ch., Jezzard P., Adams M. M., Turner R., Leslie G. Ungerleider L. G. The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex. Proceedings of the National Academy of Sciences USA, 1998. 95:861-868.Search in Google Scholar

Khedr E. M., Ahmed M. A., Fathy N, Rothwell J. C. Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic stroke. Neurology, 2005. 65:466-468.Search in Google Scholar

Kim Y.-H., Park J. W., Ko M.-H., Jang S-H., Lee P. K. W. Plastic changes of motor network after constraint-induced movement therapy. Yonsei Medical Journal, 2004. 44: 242-246.Search in Google Scholar

Konorski J. Conditioned reflexes and neuron organization. 1948. Cambridge University Press, Cambridge.Search in Google Scholar

Liepert J., Bauder H., Miltner W. H. R., Taub E., Weiller C. Treatment-induced cortical reorganization after stroke in humans. Stroke, 2000a. 31:1210-1216.Search in Google Scholar

Liepert J., Storch P., Fritsch A., Weiller C. Motor cortex disinhibition in acute stroke. Clinical Neurophysiology, 2000b. 111: 671-676.Search in Google Scholar

Liepert J., Uhde I., Gräf S., Leidner O., Weiller C. Motor cortex plasticity during forced-use therapy in stroke patients: a preliminary study. Journal of Neurology, 2001. 248: 315-321.Search in Google Scholar

Liepert J. Motor cortex excitability in stroke before and after constraint-induced movement therapy. Cognitive Behavioral Neurology, 2006. 19:41-47.Search in Google Scholar

Luft A. R., McCombe-Waller S., Whital J., Forrester L. W., Macko R., Sorkin J. D., Schulz J. B., Goldberg A. P., Hanley D. F. Repetitive bilateral arm training and motor cortex activation in chronic stroke: a randomized controlled trial. Journal of the American Medical Association, 2004. 292:1853-1861.Search in Google Scholar

Magavi S. S., Leavitt B. R,. Macklis J. D. Induction of neurogenesis in the neocortex of adult mice Nature, 2000. 405: 951-955.Search in Google Scholar

Malenka R. C., Bear M. F. LTP and LTD: an embarrassment of riches. Neuron, 2004. 44:5-21.Search in Google Scholar

Mansur C. G., Fregni F., Boggio P. S. et al. A sham stimulation-controlled trial of rTMS of the unaffected hemisphere in stroke patients. Neurology, 2005. 64:1802-1804.Search in Google Scholar

Mark V. W., Taub E., Morris D. M. Neuroplasticity and constraint-induced movement therapy. Europa Medicophysica, 2006. 42: 269-284.Search in Google Scholar

McCombe Waller S, Whitall J. Central motor excitability with unilateral dominant, unilateral nondominant, and bilateral movement tasks in left and right handed adults. Journal of Neurologic Physical Therapy, 2004. 28:170 (cited by Hummel F. et al. 2005).Search in Google Scholar

Mogilner A., Grossman J. A., Ribary U., Joliot M., Volkmann J., Rapaportt D., Beasley R. W., Llinas R. R. Somatosensory cortical plasticity in adult humans revealed by magnetoencephalography. Proceedings of the National Academy of Sciences USA, 1993. 90:3593-3597.Search in Google Scholar

Mountz J. M. Nuclear medicine in the rehabilitative treatment evaluation in stroke recovery: role of diaschisis resolution and cerebral reorganization. Europa Medicophysica, 2007. 43: 221-239.Search in Google Scholar

Nudo R. J. Postinfarct cortical plasticity and behavioral recovery. Stroke, 2007. 38: 840-845.Search in Google Scholar

Pascual-Leone A., Torres F. Plasticity of the sensorimotor cortex representation of the reading finger in Braille readers. Brain, 1993. 116:39-52.Search in Google Scholar

Penfield W., Rasmussen T. The cerebral cortex of man. Macmillan, New York, 1957.Search in Google Scholar

Rioult-Pedotti M-S., Friedman D., Hess G., Donoghue J. P. Strengthening of horizontal cortical connections following skill learning. Nature Neuroscience, 1998. 1:230-234.Search in Google Scholar

Rossini P. M., Altamura C., Eerreri F., Melgari J.-M., Tecchio F., Tombini M., Pasqualetti P., Vernieri F. Neuroimaging experimental studies on brain plasticity in recovery from stroke. Europa Medicophysica, 2007. 43: 242-254.Search in Google Scholar

Sanes J. N., Donoghue J. P. Plasticity and primary motor cortex. Annual Review of Neuroscience, 2000. 23:393-415Search in Google Scholar

Schieber M. H., Baker J. Descending control of movement. In: Fundamental Neuroscience, Second Edition. L. R. Squire et al. Eds. Academic Press, New York, pp 791-814Search in Google Scholar

Serrien D. J., Strens L. H. A., Cassidy M. J., Thompson A. J., Brown P. Functional significance of the ipsilateral hemisphere during movement of the affected hand after stroke. Experimental Neurology, 2004. 190: 425-432.Search in Google Scholar

Szaflarski J. P., Page S. J., Kissela B. M., Lee J.-H., Levine P., Strakowski S. M. Cortical reorganization following modified constraint-induced movement therapy: a study of 4 patients with chronic stroke. Archives of Physical Medicine and Rehabilitation, 2006. 87: 1052-1058.Search in Google Scholar

Ward N. S., Cohen L. G. Mechanisms underlying recovery of motor function after stroke. Archives of Neurology, 2004. 61:1844-1848.Search in Google Scholar

Whitall J., McCombe Waller S., Silver K. H., Macko R. F. Repetitive bilateral arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic stroke. Stroke 2000;31:2390-2395.Search in Google Scholar

Ziemann U., Ishii K. Borgheresi A., Yaseen Z., Battaglia F., Hallett M., Cincotta M., Wassermann E. M. Dissociation of the pathways mediating ipsilateral and contralateral motor-evoked potentials in human hand and arm muscles. Journal of Physiology, 1999. 518: 895-906.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo