1. bookVolume 28 (2022): Issue 1 (March 2022)
Journal Details
First Published
30 Mar 2018
Publication timeframe
4 times per year
access type Open Access

Specifics of physico-mechanical characteristics of thermally-hardened rebar

Published Online: 12 Feb 2022
Volume & Issue: Volume 28 (2022) - Issue 1 (March 2022)
Page range: 73 - 81
Received: 05 Nov 2021
Accepted: 20 Dec 2021
Journal Details
First Published
30 Mar 2018
Publication timeframe
4 times per year

Thermal hardening is widely used nowadays for modification of steel bar properties and obtaining effective reinforcing material. Strength and deformation characteristics of thermally hardened reinforcement is the complex indicator of reinforcement efficiency. Therefore, reliable assessment of physico-mechanical characteristics of thermally hardened rebar is topical and important issue. This article is intended to the analysis of physico-mechanical characteristics of thermally hardened rebar on the basis of experimental data. Thorough statistical processing of experimental data was made and specific features of strength parameters were identified. Analytical model of strength characteristics is proposed, which enables to take into account inhomogeneous strength properties of the rebar along its cross-section. It could be stated that assessment of physico-mechanical characteristics of thermally hardened rebar is topical and important issue, which is the prospective area of further research.


JEL Classification

Ahaneku, I.E., Kamal, A.R., Ogunjirin, O. A., 2012. Effects of Heat Treatment on the Properties of Mild Steel Using Different Quenchants. Frontiers in Science, 2(6), 153-158, DOI: 10.5923/j.fs.20120206.0410.5923/j.fs.20120206.04 Search in Google Scholar

Andriulaitytė, I., Valentukeviciene, M., 2020. Circular economy in buildings. Construction of optimized energy potential (CoOPE), 9(2), 23-29, DOI: 10.17512/bozpe.2020. Search in Google Scholar

Azizov, T.N., Kochkarev, D.V., Galinska, T.A., 2019. New de-sign concepts for strengthening of continuous reinforced-concrete beams. In IOP Conference Series: Materials Science and Engineering, 708(1), 012040, IOP Publishing, DOI: 10.1088/1757-899X/708/1/01204010.1088/1757-899X/708/1/012040 Search in Google Scholar

Bambura, A.M., Dorogova, O.V., Sazonova, I.R., Bogdan, V.M., 2018. Calculations of the eccentric compressed slender reinforced concrete members applying an “effective” curvature method, Nauka i budivnictvo, (3), 10-20, [In Ukranian]. Search in Google Scholar

Blikharskyy, Y.Z., Maksymenko, O.P., 2020a. Evaluation of strength and deformability of heat-strengthened reinforcement. Physico-chemical mechanics of materials, 56(6), 60-64, [In Ukranian].10.1007/s11003-021-00496-4 Search in Google Scholar

Blikharskyy, Y., Kopiika, N., Selejdak, J., 2020b. Non-uniform corrosion of steel rebar and its influence on reinforced concrete elementsreliability. Production Engineering Archives, 26(2), 62-72, DOI: 10.30657/pea.2020. Search in Google Scholar

Blikharskyy, Y., Selejdak, J., 2021. Influence of the percentage of reinforcement damage on the bearing-capacity of RC beams (CoOPE). 10(1), 145-150, DOI: 10.17512/bozpe.2021.1.1510.17512/bozpe.2021.1.15 Search in Google Scholar

Blikharskyy, Y., Selejdak, J., Kopiika, N., 2021a. Corrosion Fatigue Damages of Rebars under Loading in Time. Materials, 14(12), 3416, DOI: 10.3390/ma1412341610.3390/ma14123416823560334203076 Search in Google Scholar

Blikharskyy, Y., Selejdak, J., Kopiika, N. 2021b. Specifics of corrosion processes in thermally strengthened rebar. Case Studies in Construction Materials, 15, e00646, DOI: 10.1016/j.cscm.2021.e0064610.1016/j.cscm.2021.e00646 Search in Google Scholar

Blikharskyy, Y., Vashkevych, R., Kopiika, N., Bobalo, T., Blikharskyy, Z., 2021c. Calculation residual strength of rein-forced concrete beams with damages, which occurred during loading. In IOP Conference Series: Materials Science and Engineering, IOP Publishing, 1021(1), 012012, DOI: 10.1088/1757-899X/1021/1/01201210.1088/1757-899X/1021/1/012012 Search in Google Scholar

Bobalo, T., Blikharskyy, Y., Kopiika, N., Volynets, M., 2020. Influence of the Percentage of Reinforcement on the Compres-sive Forces Loss in Pre-stressed RC Beams Strengthened with a Package of Steel Bars. In International Scientific Conference EcoComfort and Current Issues of Civil Engineering, Springer, Cham, 55-62, DOI: 10.1007/978-3-030-57340-9_710.1007/978-3-030-57340-9_7 Search in Google Scholar

Bobalo, T., Blikharskyy, Y., Kopiika, N., Volynets, M., 2019a. Serviceability of RC beams reinforced with high strength rebar’s and steel plate. In International Conference Current Issues of Civil and Environmental Engineering Lviv-Košice–Rzeszów (September, 2019), Springer, Cham, 25-33, DOI: 10.1007/978-3-030-27011-7_410.1007/978-3-030-27011-7_4 Search in Google Scholar

Bobalo, T., Blikharskyy, Y., Kopiika, N., Volynets, M., 2019b. Theoretical analysis of RC beams reinforced with high strength rebar’s and steel plate. In IOP Conference Series: Materials Sci-ence and Engineering, IOP Publishing, 708(1), 012045, DOI: 10.1088/1757-899X/708/1/01204510.1088/1757-899X/708/1/012045 Search in Google Scholar

Czajkowska, A., Raczkiewicz, W., Bacharz, M., Bacharz, K., 2020. Influence of maturing conditions of steel-fibre reinforced concrete on its selected parameters. Construction of optimized energy potential (CoOPE), 9(1), 47-54, DOI: 10.17512/bozpe.2020.1.0510.17512/bozpe.2020.1.05 Search in Google Scholar

Choe, G., Shinohara, Y., Kim, G., Nam, J., 2020. Numerical Investigation on Lateral Confinement Effects on Concrete Cracking Induced by Rebar Corrosion. Materials, 13, 1156, DOI: 10.3390/ma1305115610.3390/ma13051156708496232150941 Search in Google Scholar

DSTU ISO 6892-1: 2019 Metallic materials. Tensile tests. Test method at room temperature (ISO 6892-1:2016, IDT) [Valid from 2020-01-07]. Kyiv, 2019. 39 p. [In Ukranian]. Search in Google Scholar

Fomin, O., Vatulia, G., Horbunov, M., Lovska, A., Píštěk, V., Kučera, P., 2021. Determination of residual resource of flat wagons load-bearing structures with a 25-year service life. In IOP Conference Series: Materials Science and Engineering, IOP Publishing, 1021(1), 012005, DOI: 10.1088/1757-899X/1021/1/012005.10.1088/1757-899X/1021/1/012005 Search in Google Scholar

Gotal Dmitrović, L., Kos, Ž., Klimenko, Y., 2019. The development of prediction model for failure force of damaged rein-forced-concrete slender columns. Tehnicki Vjesnik, 26(6), 1635-1641, DOI: 10.17559/TV-2018121909361210.17559/TV-20181219093612 Search in Google Scholar

Hamid, Q.Y., 2020. Heat treatment. Project: Engineering mechanics, 4, URL: https://www.researchgate.net/publication/338410268_Heat_treatment. Search in Google Scholar

Karpiuk, V., Somina, Y. and Maistrenko, O., 2020. Engineering Method of Calculation of Beam Structures Inclined Sections Based on the Fatigue Fracture Model. LNCE, (47), 135-144, DOI: 10.1007/978-3-030-27011-7_1710.1007/978-3-030-27011-7_17 Search in Google Scholar

Klymenko, Y., Grynyova, I., Kos, Z., 2019. The method of calculating the bearing capacity of compressed stone pillars, In International Conference Current Issues of Civil and Environ-mental Engineering Lviv-Košice– Rzeszów, Springer, Cham, 161-167, DOI: 10.1007/978-3-030-27011-7_2010.1007/978-3-030-27011-7_20 Search in Google Scholar

Klymenko, Y., Kos, Z., Grynyova, I., Maksiuta, O., 2020. Operation of Damaged H-Shaped Columns. In International Scientific Conference Eco-Comfort and Current Issues of Civil Engineering, Springer, Cham, 192-201.10.1007/978-3-030-57340-9_24 Search in Google Scholar

Kramarchuk, A., Ilnytskyy, B., Bobalo, T., Lytvyniak, O., 2021. A study of bearing capacity of reinforced masonry beams with GFRP reinforcement. In IOP Conference Series: Materials Science and Engineering, IOP Publishing, 1021(1), 012018, DOI: 10.1088/1757-899X/1021/1/01201810.1088/1757-899X/1021/1/012018 Search in Google Scholar

Lima, J., Barros, J. 2011. Reliability analysis of shear strengthening externally bonded FRP models. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 164, 43-56, DOI: 10.1680/stbu.9.0004210.1680/stbu.9.00042 Search in Google Scholar

Lipiński, T., 2017. Roughness of 1.0721 steel after corrosion tests in 20% NaCl. Production Engineering Archives, 15(15), 27-30, DOI: 10.30657/pea.2017.15.0710.30657/pea.2017.15.07 Search in Google Scholar

Lychev, A.S., Vinogradov, O.G., Rodionov, V.G., 1990. Reliability of building structures. Kuibyshev, USSR, URL: https://www.elibrary.ru/item.asp?id=30368602, [In Russian]. Search in Google Scholar

Maisuradze, M.V, Kuklina, A.A., Lebedev, D.I., 2020. Isothermal Heat Treatment of the Low-Carbon Martensitic Steel. Materials Engineering and Technologies for Production and Processing VI, Selected peer-reviewed full text papers from the 6th International Conference on Industrial Engineering, ICIE 2020, Solid State Phenomena, 6th International Conference on Industrial Engineering, ICIE 2020, Sochi, Russian Federation, 316, SSP, Trans Tech Publications Ltd., 264-268.10.4028/www.scientific.net/SSP.316.264 Search in Google Scholar

Messer, B., Oprea, V., Wright, A., 2007. Duplex stainless steel welding: best practices. Stainl Steel World, 53-63, URL: https://pdf4pro.com/download/duplex-duplex-stainless-duplex-steel-welding-best-practices-596f0d.html Search in Google Scholar

Nair, S.A. O., Pillai, R.G., 2017. TM-Ring Test-A quality control test for TMT (or QST) steel reinforcing bars used in reinforced concrete systems. Indian Concrete Institute Journal, 18(1), 27-35, URL: https://www.researchgate.net/profile/Radhakrishna-Pil-lai/publication/340502610_TM_Ring_test_for_steel_reinforcement_-_ICI_Journal/links/5e8d8a9392851c2f52887df2/TM-Ring-test-for-steel-reinforcement-ICI-Journal.pdf. Search in Google Scholar

Okeil, A., El-Tawil, S., Shahawy, M., 2002. Flexural reliability of reinforced concrete bridge girders strengthened with carbon fiber-reinforced polymer laminates. Journal of Bridge Engineering, 7(5), 290-299, DOI: 10.1061/(ASCE)1084-0702(2002)7:5(290)10.1061/(ASCE)1084-0702(2002)7:5(290) Search in Google Scholar

Ouzaa, K., Chahmi, O., 2019. Numerical model for prediction of corrosion of steel reinforcements in reinforced concrete structures, Underground Space, 4(1), 72-77, DOI: 10.1016/j.undsp.2018.06.00210.1016/j.undsp.2018.06.002 Search in Google Scholar

Özdemir, Z., 2021. Shallow Cryogenic Treatment (SCT) Effects on the Mechanical Properties of High Cr Cast Iron: Low-Carbon Cast Steel Bimetallic Casting. International Journal of Metalcasting, (IF1.805), 15, 952-961, DOI: 10.1007/s40962-020-00532-010.1007/s40962-020-00532-0 Search in Google Scholar

Pham, H., Al-Mahaidi, R., 2008. Reliablity analysis of bridge beams retrofitted with fibre reinforced polymers. Composite Structures, 82(2), 177-184, DOI: 10.1016/j.compstruct.2006.12.01010.1016/j.compstruct.2006.12.010 Search in Google Scholar

Pietraszek, J., Radek, N., Goroshko, A.V., 2020. Challenges for the DOE methodology related to the introduction of Industry 4.0. Production Engineering Archives, 26(4), 190-194, DOI: 10.30657/pea.2020.26.3310.30657/pea.2020.26.33 Search in Google Scholar

Santos, J., Henriques, A.A., 2015. Strength and ductility of dam-aged temp-core rebars. Procedia Engineering, 114, 800-807, DOI: 10.1016/j.proeng.2015.08.02910.1016/j.proeng.2015.08.029 Search in Google Scholar

Shi, J., Ming, J., Sun, W., Zhang, Y., 2017. Corrosion performance of reinforcing steel in concrete under simultaneous flexural load and chlorides attack. Construction and Building Materials, 149, 315-326, DOI: 10.1016/j.conbuildmat.2017.05.09210.1016/j.conbuildmat.2017.05.092 Search in Google Scholar

Siyuan, Z., Kaixuan, C., Wuqikun, Y. Xiaohua, C., Zidong, W., 2019. Effect of Heat Treatment on Microstructure and Mechanical properties of high strength low alloy (HSLA) steel. Research and Application of Materials Science, 1(2), 31-38, DOI: 10.33142/msra.v1i2.166610.33142/msra.v1i2.1666 Search in Google Scholar

Szataniak, P., Novy, F., Ulewicz, R., 2014. HSLA steels - Comparison of cutting techniques. METAL 2014 - 23rd International Conference on Metallurgy and Materials, Conference Proceedings, 778-783. Search in Google Scholar

Torbati-Sarrraf, H., Poursaee, A., 2019. Corrosion Improvement of Carbon Steel in Concrete Environment through Modification of Steel Microstructure. J. Mater. Civ. Eng, 31(5), 25-33. DOI: 10.1061/(ASCE)MT.1943-5533.000267710.1061/(ASCE)MT.1943-5533.0002677 Search in Google Scholar

Tóth, L., Haraszti, F., Kovács, T., 2018. Heat treatment effect for stainless steel corrosion resistance. European Journal of Material Science and Engineering, 3(2), 38-42, URL: https://ejmse.ro/articles/EJMSE_03_02_04_Toth.pdf Search in Google Scholar

Trentin, C., Casas, J., 2015. Safety factors for CFRP strengthening in bending of reinforced concrete bridges. Composite Structures, 128, 188-198, DOI: 10.1016/j.compstruct.2015.03.04810.1016/j.compstruct.2015.03.048 Search in Google Scholar

Tu, S., Ren, X., He, J., Zhang, Z., 2020. Stress–strain curves of metallic materials and post-necking strain hardening characterization: A review. Fatigue & Fracture of Engineering Materials & Structures, 43(1), 3-19. DOI: 10.1111/ffe.1313410.1111/ffe.13134 Search in Google Scholar

Wang, C., Chen, Y., Han, J., Ping, H., Zhao, X., 2018. Microstructure of ultrahigh carbon martensite. Progress in Natural Science: Materials International, 28(6), 749-753, DOI: 10.1016/j.pnsc.2018.11.00810.1016/j.pnsc.2018.11.008 Search in Google Scholar

Wang, N., Ellingwood, B., Zureick, A., 2010. Reliability-based evaluation of flexural members strengthened with externally bonded fiber-reinforced polymer composites. Journal of Structural Engineering-ASCE, 136, 1151-1160, DOI: 10.1061/(asce)st.1943-541x.000019910.1061/(ASCE)ST.1943-541X.0000199 Search in Google Scholar

Xiong, Z.P., Kostryzhev, A.G., Stanford, N.E., Pereloma, E.V., 2015. Micro-structures and mechanical properties of dual phase steel produced by laboratory simulated strip casting, Materials & Design, 88, 537-549, DOI: 10.1016/j.matdes.2015.09.03110.1016/j.matdes.2015.09.031 Search in Google Scholar

Yang, Q., Zhou, Y., Li, Z., Mao, D., 2019. Effect of Hot Deformation Process Parameters on Microstructure and Corrosion Behavior of 35CrMoV Steel. Materials, 12, 1455, DOI: 10.3390/ma1209145510.3390/ma12091455653981331064057 Search in Google Scholar

Yogalakshmi, N.J., Rao, K.B., Anoop, M.B., 2020. Durability-Based Service Life Design of RC Structures – Chloride-Induced Corrosion. In Reliability, Safety and Hazard Assessment for Risk-Based Technologies, Varde, P., Prakash, R., Vinod, G., Eds.; Springer: Singapore, 579-590, DOI: 10.1007/978-981-13-9008-1_4810.1007/978-981-13-9008-1_48 Search in Google Scholar

Zhang, Q., Molkov, Y.V., Sobko, Y.М., Blikharskyy, Y.Z., 2015. Determination of the mechanical characteristics and specific fracture energy of thermally hardened reinforcement. Materials Science, 50(6), 824-829. DOI: 10.1007/s11003-015-9789-910.1007/s11003-015-9789-9 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo