1. bookVolume 28 (2022): Issue 2 (June 2022)
Journal Details
License
Format
Journal
eISSN
2353-7779
First Published
30 Mar 2018
Publication timeframe
4 times per year
Languages
English
access type Open Access

Quality of automotive sand casting with different wall thickness from progressive secondary alloy

Published Online: 19 May 2022
Volume & Issue: Volume 28 (2022) - Issue 2 (June 2022)
Page range: 172 - 177
Received: 17 Feb 2022
Accepted: 28 Mar 2022
Journal Details
License
Format
Journal
eISSN
2353-7779
First Published
30 Mar 2018
Publication timeframe
4 times per year
Languages
English
Abstract

This paperwork is focused on the quality of AlSi6Cu4 casting with different wall thicknesses cast into the metal mold. Investigated are structural changes (the morphology, size, and distribution of structural components). The quantitative analysis is used to numerically evaluate the size and area fraction of structural parameters (α-phase, eutectic Si, intermetallic phases) between delivered experimental material and cast with different wall thicknesses. Additionally, the Brinell hardness is performed to obtain the mechanical property benefits of the thin-walled alloys. This research leads to the conclusion, that the AlSi6Cu4 alloy from metal mold has finer structural components, especially in small wall thicknesses, and thus has better mechanical properties (Brinell hardness). These secondary Al-castings have a high potential for use in the automotive industry, due to the thin thicknesses and thus lightweight of the construction.

Keywords

Bacaicoa, I., Luetje, M., Zeismann, F., Geisert, A., Fehlbier, M., Brueckner-Foit, A., 2019. On the role of Fe-content on the damage behavior of an Al-Si-Cu alloy. Procedia Structural Integrity, 23, 33-38, DOI: 10.1016/j.prostr.2020.01.05910.1016/j.prostr.2020.01.059 Search in Google Scholar

Cais, J., 2015. Electron microscopy. Metalografie, Centrum pro studium vysokého školství, Praha. (in Czech) Search in Google Scholar

Castro-Sastre, M.Á., García-Cabezón, C., Fernández-Abia, A.I., Martín-Pedrosa, F., Barreiro, J., 2021. Comparative Study on Microstructure and Corrosion Resistance of Al-Si Alloy Cast from Sand Mold and Binder Jetting Mold. Metals, 11(9), 1421, DOI: 10.3390/met1109142110.3390/met11091421 Search in Google Scholar

Davor, S., Špada, V., Iljkić, D., 2019. Influence of natural aging on the mechanical properties of high pressure die casting (HPDC) EN AC 46000-AlSi9Cu3(Fe) Al alloy. Materials Testing 61(5), 448-454, DOI: 10.3139/120.11134110.3139/120.111341 Search in Google Scholar

Fiocchi, J., Biffi, C.A., Tuissi, A., 2020. Selective laser melting of high-strength primary AlSi9Cu3 alloy: Processability, microstructure, and mechanical properties. Materials & Design, 191, 108581, DOI: 10.1016/j.matdes.2020.10858110.1016/j.matdes.2020.108581 Search in Google Scholar

Ji, S., Yang, W., Gao, F., Watson, D., Fan, Z., 2013. Effect of iron on the microstructure and mechanical property of Al–Mg–Si–Mn and Al–Mg–Si diecast alloys. Materials Science and Engineering: A, 564, 130-139, DOI: 10.1016/j.msea.2012.11.09510.1016/j.msea.2012.11.095 Search in Google Scholar

Kasala, J., Pernis, R., Pernis, I., Ličková, M., 2011. Influence of iron and mangan quality on porn level in the Al-si-Cu, Chem. Letters, 105, 627-629. (in Slovak) Search in Google Scholar

Kasińska, J., Bolibruchová, D., Matejka, M., 2020. The Influence of Remelting on the Properties of AlSi9Cu3 Alloy with Higher Iron Content. Materials (Basel), 13(3), 575, DOI: 10.3390/ma1303057510.3390/ma13030575704071131991831 Search in Google Scholar

Kaufman, J., Rooy, E., 2004. Aluminum alloy castings: properties, processes, and applications, ASM International, USA.10.31399/asm.tb.aacppa.9781627083355 Search in Google Scholar

Kuchariková, L., Liptáková, T., Tillová, E., Kajánek, D., Schmidová, E., 2018. Role of Chemical Composition in Corrosion of Aluminum Alloys. Metals, 8(8), 581, DOI: 10.3390/met808058110.3390/met8080581 Search in Google Scholar

Kuchariková, L., Tillová, E., Pastirčák, R., Uhríčik, M., Medvecká, D., 2019. Effect of Wall Thickness on the Quality of Casts from Secondary Aluminium Alloy. Manufacturing Technology, 19(5), 797-801, DOI: 10.21062/ujep/374.2019/a/1213-2489/MT/19/5/797.10.21062/ujep/374.2019/a/1213-2489/MT/19/5/797 Search in Google Scholar

Li, F., Zhang, J., Bian, F., Fu, Y., Xue, Y., Yin, F., Xie, Y., Xu, Y., Sun, B., 2015. Mechanism of Filling and Feeding of Thin-Walled Structures during Gravity Casting. Materials, 8(6), 3701-3713. DOI: 10.3390/ma8063701.10.3390/ma8063701 Search in Google Scholar

Mahta, M., Emamy, M., Cao, M., Xinjin, J., Campbell, John., 2008. Overview of Β-Al5FeSi phase in Al-Si alloys. Materials Science Research Trends, 251-272. Search in Google Scholar

Mae, H., Teng, X., Bai, Y., Wierzbicki, T., 2008. Comparison of ductile fracture properties of aluminum castings: Sand mold vs. metal mold. International Journal of Solids and Structures, 45(5), 1430-1444, DOI: 10.1016/j.ijsolstr.2007.10.016.10.1016/j.ijsolstr.2007.10.016 Search in Google Scholar

Qi, M., Li, J., Kang, Y., 2019. Correlation between segregation behavior and wall thickness in a rheological high pressure die-casting AC46000 aluminum alloy. Journal of Materials Research and Technology, 8(4), 3565-3579, DOI: 10.1016/j.jmrt.2019.03.016.10.1016/j.jmrt.2019.03.016 Search in Google Scholar

Reyes, A.E.S., Guerrero, G.A., Ortiz, G.R., Gasga, J.R., Robledo, J.F.G., Flores, O.L., Costa, P.S., 2020. Microstructural, microscratch and nanohardness mechanical characterization of secondary commercial HPDC AlSi9Cu3-type alloy. Journal of Materials Research and Technology, 9, 4, 8266-8282, DOI: 10.1016/j.jmrt.2020.05.098.10.1016/j.jmrt.2020.05.098 Search in Google Scholar

Roučka, J., 2004. Metalurgy of non-ferrous alloys, Cerm, Brno.(in Czech) Search in Google Scholar

Tillová, E., Chalupová, M., 2009. Structural analysis of Al-Si, EDIS, Žilina. (in Slovak) Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo