1. bookVolume 14 (2021): Issue 1 (April 2021)
Journal Details
License
Format
Journal
eISSN
2601-5773
First Published
30 Dec 2018
Publication timeframe
2 times per year
Languages
English
access type Open Access

The Improvement of the Precision of the Archimedean Spiral Toothline Gear Cutting Mill

Published Online: 05 Aug 2021
Volume & Issue: Volume 14 (2021) - Issue 1 (April 2021)
Page range: 23 - 29
Journal Details
License
Format
Journal
eISSN
2601-5773
First Published
30 Dec 2018
Publication timeframe
2 times per year
Languages
English
Abstract

The precision of gears has a major influence on the quality of the transmission. If the gear cannot be finished by grinding, the precision of the generating tool becomes essential. Archimedean spiral toothline cylindrical gears are obtained by reciprocate meshing using a milling cutter built up by individual cutters, organized in groups. The profiles of edges must be realized with a minimal profile error. In order to ensure the quality and the precision of the meshed tooth surface, and also the profile constancy after re-sharpening, relief faces must be realized by a grinding relieving operation. A secondary effect of the kinematics of relieving end the spatial extent of the grinding wheel a post undercut results and this produces an inevitable profile error. The present paper discusses a possible grinding wheel setting that produces a maximum theoretical profile error under 1μm along the whole re-sharpening reserve of the cutter. The proposed setting can be realized on a classical relieving lathe.

Keywords

[1] Máté M.: Spirálfogazatú hengeres kerekek geometriája és gyártáselmélete. Kutatási beszámoló. MTA Domus Kuratórium, 2011. évi A2011061. számú pályázat, Budapest, 2011. 1–18. Search in Google Scholar

[2] Máté M.: Tangenciális lefejtéssel megvalósított Arkhimédész-féle spirál vezérgörbéjű fogazatok lefejtésének tanulmányozása. Kutatási beszámoló. A2-NJN-TOK-13-0009 azonosítójú, Neumann János kutatási beszámoló. 1–42. Search in Google Scholar

[3] Litvin F. L.: A fogaskerék-kapcsolás elmélete. Budapest, Műszaki Könyvkiadó, 1972. 113–127. Search in Google Scholar

[4] Máté M.: The micro-geometric model of the toothflanks of a cylindrical gear with archimedean spiral shaped toothline. In: 6th International Scientific and Expert Conference TEAM 2014. 1–8. Search in Google Scholar

[5] Gyéresi H. A.: A csigamarós fogaskerék-lefejtő gép kiegészítése az Arkhimédész-féle spirális fogirányvonalú fogaskerekek megmunkálásához. Államvizsga- dolgozat, Sapientia EMTE, 2016. Search in Google Scholar

[6] Máté M., Gyéresi H. A.: About the Profile Constancy by Curved Teeth Cylindrical Gear’s Cutter Head. In: MACRO-2015-International Conference on Recent Achievements in Mechatronics, Automation, Computer Science and Robotics. Tîrgu-Mures, Romania, March 6-7, 2015. Conference Proceedings. ISS N, ISS N-L: 2247-0948.13-24. https://doi.org/10.1515/macro-2015-000210.1515/macro-2015-0002 Search in Google Scholar

[7] Ábel J., Balajti Zs.: Szerszámél geometriai vizsgálatához szükséges feltétel, a Monge-tégla bijektív tartományának határfelülete. In: XXVII. Nemzetközi Gépészeti Konferencia, Nagyvárad, ISS N 2068-1267 OGÉT, 2019. április 25–28., 22–26.. Search in Google Scholar

[8] Balajti Zs., Dudás, I.: The Monge Theorem and Its Application in Engineering Practice. In: International Journal of Advanced Manufacturing Technology, 91/1–4. (2017) 739–749. https://doi.org/10.1007/s00170-016-9763-110.1007/s00170-016-9763-1 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo