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Abstract. We present some paradoxes concerning voting theory – both ap-
portionment methods and elections of a winner. All the examples in the paper
were constructed by the author. Mathematical background of some voting
methods is explained. Also, the fundamental results on voting theory concern-
ing the nonexistence of fair methods with some historical remarks are described.
Finally, a new result on a weak method of n votes is presented.
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1. On some paradoxical phenomena in apportionment methods

In many countries members of the parliament are elected with the use of appor-
tionment methods. Number of seats given to a party is determined by the number
of votes it receives. It is frequently said that thanks to such a method we get
a proportional representation of parties or political groups in the parliament. For
example, one may suppose that a party receiving 20% of the national vote would
receive approximately 20% of the seats in the parliament. Anyway, although those
methods are called “proportional”, very frequently an obtained result is far from
proportional and those methods lead to many paradoxes.

In such a method, usually a country is divided into wards, i.e. electoral sub-
divisions. In each ward some members of the parliament are elected. In voting,
each voter indicates a preference for one party and for one candidate on the list
of this party. As the result, numbers of seats that are given for those parties in
the ward are determined.
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Let us explain in the example the method currently used in several countries,
including Poland (the method is known as the Je↵erson method or the D’Hondt
method). The example is shown in Table 1.

votes (:1) :2 :3 :4 :5 Representatives
Fees ? 24000 ? 12000 ? 8000 ? 6000 4800 4
Bees ? 21600 ? 10800 ? 7200 5400 4320 3
Jees ? 12000 6000 4000 1
Kees ? 8000 4000 1
Nees ? 7000 3500 1
Pees 4200 –
Rees 4000 –

Table 1.

The rule is as follows (its mathematical background will be explained in Section
2). We divide numbers of votes by consecutive natural numbers, i.e. by 1, 2, 3, . . .
If in the ward there are n seats to be taken, then n greatest quotients give seats
to respective parties. In Table 1 we assume that there are 10 representatives to
be elected. The quotients that give seats to the parties are indicated by stars.

In this example we already see that the distribution may be far from propor-
tional. In the case of Bees:Jees we have the votes with the proportion 1.8 : 1
and the seats with 3 : 1. If we consider Fees :Jees, we have 2 : 1 against 4 : 1. It
is not di�cult to construct more such examples. In fact, if a number of seats in
a ward is not too large (say: about 10 or smaller), very many natural models lead
to some disproportions.

In many countries, the election threshold is introduced. This means that to be
considered in the distribution of seats, a party must receive a specified minimum
percentage of votes (in Poland, it is 5%). What is important, this percentage
must be obtained in the whole country, not in a considered ward. Let us come
back to the previous example, now with the final result shown in Table 2.

Assume that although in this ward Bees obtained a very good score, in the
rest of the country the voters did not support Bees so strongly and as the result
this party did not obtain 5% votes in the whole country. Thus the party is not
considered in the distribution of seats. Nevertheless, in the ward 10 seats are to
be taken, so three seats that were previously given to Bees must be given to other
parties. The quotients that give seats are again indicated by stars.

Now, the result is even more strange. We see that Pees got a seat and Bees
not, although the proportion is 5.14 : 1. Note that Pees got a seat in this ward
just because of the lack of a suitable number of votes for Bees in other wards,
perhaps in a region of the country which is very far from this one and where Pees
do not apply for any seat. We may also see some disproportions if we compare
seats for parties which gained seats in this ward.



ON SOME PARADOXES IN VOTING THEORY 57

votes (:1) :2 :3 :4 :5 Representatives
Fees ? 24000 ? 12000 ? 8000 ? 6000 ? 4800 5
Bees 21600 10800 7200 5400 4320 –
Jees ? 12000 ? 6000 4000 2
Kees ? 8000 4000 1
Nees ? 7000 3500 1
Pees ? 4200 1
Rees 4000 –

Table 2.

Suppose that in a certain ward there is a perfect candidate and all the voters
in this ward vote for this candidate. However, the number of voters in this ward
is smaller than 5% of the population in the country, so this candidate will not be
elected to the parliament. He (or she) will not get 5% votes in the whole country,
although all the voters in this region wants him (or her) as their representative.

We may see other paradoxes. Consider the example presented in Table 3.
In a certain ward, where 5 seats are to be distributed, three parties apply for

those seats. Bees will get 6000 votes, Fees 5700 votes, Kees 1950 votes (see upper
rows of Table 3). The distribution 3 : 2 : 0 is reasonable. However, assume that
just before the day of election a group of 600 voters (possible because anti-Fees
agitation organized by Bees) gave up voting for Fees. Then 400 of them changed
their opinion and voted for Bees, but 200 decided to give their votes to Kees.

If the method was logical, there would be only two possibilities. Either nothing
would change (as the modification would not be essential enough), or Fees would
lose a seat (or seats), first for the benefit of Bees.

votes (:1) :2 :3 :4 Repr.
Bees ? 6000 ? 3000 ? 2000 1500 3

? 6400 ? 3200 2133 1600 2
Fees ? 5700 ? 2850 1900 2

? 5100 ? 2550 1700 2
Kees 1950 975 –

? 2150 1075 1

Table 3.

However, the result is shown in lower rows of Table 3. Although Fees lost votes,
the party did not lose any seat. Bees got extra votes, moreover – they got more
votes than anyone else, but they lost a seat. In this example we see a paradox
which shows that this method is far from proportionality and logical rules.
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One may presume that when the voting is organized in many wards, then the
disproportions would disappear. Indeed, this may happen. However, the story
may be completely di↵erent, as is shown in the following example.

Figure 1.

Suppose that in a certain country the opinions of voters substantially di↵er in
the East and in the West. In each East ward 50% voters vote for Bees and 50%
voters vote for Fees. In each West ward 50% voters vote for Kees and other voters
vote for many small parties which are finally eliminated because of the election
threshold (see Figure 1). As the result, Kees get 50% seats in the parliament, Bees
get 25%, and Fees get 25%, although all three parties have the same support in
the whole country.

This example is artificial, but theoretically (as we consider mathematical mod-
els) possible. Nevertheless, generally parties that have representatives in the par-
liament get (in percent) much smaller support of voters than the number of seats
in parliament.

Anyway, as a result of the election we get not anonymous seats, but concrete
members of the parliament. Here the rule is also simple. Assume that Bees won
n seats in a ward. As was mentioned above, each voter indicates one candidate
on the list of the chosen party. Now, n candidates with the highest scores from
this list are elected.
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This also leads to strange phenomena. Consider the following example. As-
sume that in a ward 6 seats are to be taken and two parties apply for them:
Mathematicians and Politicians. The result of voting is presented in Table 4.

votes (:1) :2 :3 :4 :5 :6
Mathematicians ?1200 ? 600 ? 400 ? 300 ? 240 200
Politicians ? 201 101

Table 4.

According to the rule in this method, 5 seats are won by Mathematicians and
1 seat by Politicians. Assume that the votes for the object in Mathematicians’
list were as follows: Square 201, Triangle 200, Circle 200, Ball 200, Cube 200,
Product 199. In the Politicians’ list the greatest score (35) was due to Bureaucrat.
Other politicians obtained the following results: one of them 34 and each of the
remaining four candidates 33. In this model, Product gained 199 votes against
35 votes for Bureaucrat, but Product will not be elected, although Bureaucrat
will become a member of the parliament. Note that Product itself got almost the
same number of votes as Politicians altogether.

However, generally such situations rather do not occur in practice. Frequently
the majority of votes goes to one candidate on the list (usually the one put in
“pole position”). So, assume that Mathematicians gained 100000 votes and be-
cause of that have 4 representatives in the parliament. Personally, Triangle got
99995 votes, Tangent Bundle 2 votes, Fibre Bundle 2 votes and Frame Bundle
1 vote. However, in the parliament all the representatives are equal and three
Bundles may force the act on the superiority of di↵erential geometry over clas-
sical geometry. Not speaking about the case where a member of the parliament
changes the party that put him on a list to another one, which happens in some
countries. Although in fact three Bundles became members of the parliament
thanks to votes for Triangle, being the representatives they may change their
party and become members of the party of Physicists.

There are many apportionment methods. Another popular method is the Web-
ster method (known also as the Sainte-Laguë method). Here the numbers of votes
are divided by consecutive odd numbers, i.e. by 1, 3, 5, 7,. . . .

Let’s come back to the example concerning Mathematicians and Polititians. If
the seats were distributed according to the Sainte-Laguë method, even the paradox
worse than previously may occur, see Table 5.

Now Mathematicians’ candidates gained the following numbers of votes: Square
316, Triangle 315, Circle 315, Ball 315, Cube 315, Product 314. Product obtained
much bigger support than all the politicians together (200), but Product will not
become a member of the parliament although one politician will get a seat.

The second paradox will be shown in the example presented in Table 6.
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votes (:1) :3 :5 :7 :9 :11
Mathematicians ?1890 ? 630 ? 378 ? 270 ? 210 171.8
Politicians ? 200 66.6

Table 5.

votes (:1) :3 :5 :7 :9 Representatives
Waiters ? 1050 ? 350 ? 210 ? 150 117 4
Sportsmen ? 1008 ? 336 ? 202 144 112 3

Waiters ? 1050 ? 350 ? 210 150 117 3
Footballists ? 504 ? 168 101 56 2
Basketballists ? 504 ? 168 101 56 2

Table 6.

In this example, Waiters gained 1050 votes and got 4 seats of 7 (see upper
rows of Table 6), whereas Sportsmen gained 1008 votes and got 3 seats of 7. This
seems reasonable. However, if instead of Sportsmen’s party two ,,sport parties”
take part in the election and the votes initially intended for Sportsmen are equally
distributed among two parties: Footballists and Basketballists, then the distribu-
tion of seats will be as 3 : 2 : 2 (see lower rows of Table 6). Note that Waiters get
more than 50% votes, but do not have majority in the parliament! If Sportsmen
predicted a possible result (for example on the base of a precise poll) they could
artificially split their party into two parties to get majority in the parliament.

Let us move on to a practical surprising application. In 1997 the author of
this paper published in a Polish popular monthly Wiedza i Życie (Knowledge and
Life) a popular article [6] explaining the rules of elections. Then in Poland the
so-called the modified Sainte-Laguë method was in use – here the first seat for the
party was obtained for the division the number of votes by 1.4, the rest was the
same as in Sainte-Laguë method. This method also shared paradoxes described
above. The paradox on the possible splitting of the party to get more votes was
described in this article. The article was noticed by a physicist, Jerzy Przystawa
(1939–2012), who actively worked to introduce single-winner voting in Poland.
Przystawa spread this property and called it Ciesielski law (prawo Ciesielskiego,
see [9]). Then it was applied in real life. In 2002, in the elections of the City
Council in Nysa, 23 seats were to be taken. The Mayor of Nysa, Janusz Sanocki
(1954–2020) and other members of his group realized that the group would not
get majority in the election and, consequently, would not have majority in the
City Council. Thus they split their association into two: Liga Nyska and Komitet
Obywatelski Ziemi Nyskiej. The first one won 9 seats in the City Council, the
second won 3 seats. Together they had 12 seats of 23 in the City Council, so they
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had majority. If they had run in this election as one association, they would not
have obtained a suitable results. The story is described in [13] as “a practical
application of Ciesielski law”.

2. The mathematical background of apportionment methods

The apportionment methods (which nowadays in public opinion are associated
mainly with elections) have a source completely di↵erent from party lists. In the
House of Representatives in the United States the number of seats given to each
state is determined by the population of this state. According to the Constitution
of the US, the representatives should be apportioned to the states according to
their respective numbers of persons. A natural question arises: how to apportion
those seats? The problem appeared at the end of the 18th century. The number
of states was changing, so rules must have been analyzed and possibly modified.
Then, di↵erent methods were used and those methods were changing, as new
paradoxes were being discovered and noticed. For the description of the history
of those changes, see [10].

Let us introduce the mathematical background of these methods. The following
description will be based not on elections to the parliament, but on the distribution
of seats in the House of Representatives.

First, fix the notation. Assume that there are k states that should have their
representatives. Denote the populations in these states by p1, . . . , pk and assume
that p1 + . . .+ pk = p, which is total population in the country. The numbers of
seats given to states are s1, . . . , sk and s1 + . . . + sk = s, where s is the number
of seats in the House of Representatives. Mathematically, in an apportionment
method we have to find a function

(k, s, (p1, . . . , pk)) 7! (s1, . . . , sk)

satisfying the condition s1 + . . . + sk = s. Of course, the number of seats for
a state must be an integer.

An important concept in the theory is quota. A quota of a state i is defined
as qi = pi

p · s. Roughly speaking, quota represents the appropriate number of
seats which should be assigned to a state, if the distribution is done fairly. Un-
fortunately, usually quota is not an integer. We define a standard divisor d = p

s
(roughly speaking, this is ,,the value of a seat”). Note that qi =

pi
d , i.e a result of

the division of the population of state i by the standard divisor.
We define the lower quota as the floor bqic of the quota qi, and the upper quota

as the ceiling dqie of the quota qi.
It is natural that each stage should get at least its lower quota seats. When

we give to each state its lower quota, it is almost certain then some seats will not
be distributed. It seems also natural that one may give remaining seats to the
states with the highest di↵erences qi � bqic. This method, called the Hamilton
method or the largest remainder method has been used several times. In fact, it
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was the first method suggested to be used in the apportionment in the United
States, but then it was vetoed. Nevertheless, later it was used from time to time.
This method admits some original paradoxes, in particular the Alabama Paradox
and the Oklahoma Paradox. In short, the Alabama Paradox is connected with the
situation where the number of all seats is enlarged and as a consequence one state
loses a seat. The Oklahoma Paradox deals with the situation where an extra state
joins the country, so some seats (according to the proportion in populations), say
n, have to be added to the House of Representatives, and then this extra state
really gets n seats, but the numbers of seats for some other states change. The
precise description of those paradoxes may be easily found in the literature, for
example in [10].

Let’s move to the Je↵erson method, proposed at the end of the 18th century
by Thomas Je↵erson (then a Secretary of State, later the third President of the
US) and, independently, about a century later, by Belgian lawyer Victor D’Hondt.
Assume that we want to give to each state its lower quota bqic = bpid c; recall that
d = p

s is a real value of a seat. Then the situation in which not all seats will be
taken is an event with probality close to one. Let us modify a standard divisor
d and take a number ed (in fact, ed < d ). This gives us modified quotas eqi = pi

ed
and consequently modified lower quotas beqic. We change the divisor up to the
moment when the numbers of seats obtained by modified lower quotas sum up to
s. Almost always seats obtained by lower quotas with standard divisor d result
with a number smaller than s, so an appropriate modified divisor ed is slightly
smaller than d. It is proved that the distribution of seats by this method gives
the same result as the algorithm of dividing pi by 1, 2, 3, . . . and taking s greatest
quotients.

If in this procedure we will consider upper quotas instead of lower quotas, we
get the Adams method (named by John Quincy Adams, the sixth President of the
US). Then an appropriate modified divisor ed is slightly greater than d. We may
round the modified quota eqi = pi

ed
to the nearest integer (round up if eqi = k.5 for

some k) – this gives the Webster method. This method was later independently
introduced in Europe by André Sainte-Laguë and here the distribution of seats
boils down to dividing pi by consecutive odd numbers. Note that in this method
a standard divisor may be appropriate.

In the Webster method rounding to the nearest integer may be presented as
a comparison of eqi to the arithmetic mean fAi =

beqic+deqie
2 : if eqi � fAi, we round it

up, and if eqi < fAi, we round it down. However, we may consider here also other
means and they are also taken into account in certain methods. In the case of
the geometric mean we have the Hill–Huntington method (since 1930s used in the
distribution of seats in the House of Representatives in the US) and in the case
of the harmonic mean we have the Dean method.
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A good apportionment method does not exist. Below are stated three natural
conditions. If in a certain method of apportionment any of them is not fulfilled,
then a method cannot be regarded as fair. We use the notation introduced above.
The conditions are:

• quota condition: bqic  si  dqie for any state i

• monotonicity property : pi > pj ) si � sj for any states i, j
• population property : assume that k and s are given, but populations and
seats of states change (we denote it by a 7! a); then there are no i, j with
pi > pi, si < si and pj < pj , sj > sj .

In other words, quota condition says that each state should not get less seats
than its lower quota and more seats than its upper quota (note that this implies
that if quota is an integer, then a state gets its quota). Monotonicity property
means that one state is allowed to get more seats than another only if it has
a greater (or equal) population. Population property says that it is impossible that
the population of one state increases and this state loses a seat, but simultaneously
the population of another state decreases and this second state gets an extra seat.

In 1982 Michel Balinski and H. Peyton Young proved in [4] a fundamental
theorem.

Theorem 2.1 (Balinski-Young Theorem). If k � 4, s � 7, then there is no ap-
portionment method satisfying all three conditions: quota condition, monotonicity
property, and population property.

To end this chapter note that although apportionment methods are frequently
paired o↵ with the elections, they are applicable to many situations – in fact,
frequently in much reasonable sense. We need to use apportionment methods in
many situations in real life. Say, there are some shareholders that contributed
in some venture and their contributions to this venture are di↵erent. As the
result of their contributions they should get some goods, let’s call them shares.
Contributions and shares are expressed in integers and shares are expressed in
much smaller integers. It is easy to give several examples from real life. The
question is: how to distribute shares fairly?

Note that one share is indistinguishable from another one. In the distribution
of seats to the House of Representatives in the United States the seats are given to
states and there is not indicated who personally would get a seat. Some paradoxes
in the application of apportionment methods applied to voting appear because the
concrete people are elected simultaneously with determining of numbers seats; in
other words, shares (seats) are distinguishable.

3. Single winner voting methods.

Now we turn to methods that lead to the selection of a winner. Of course,
such a selection need not be connected with politics, parliament etc. First fix the
terminology.
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Assume that two sets are given: V – a set of voters and C – a set of candidates.
Each voter ranks all candidates (an order in C fixed by a particular voter is called
a voter’s preference order). A collection of all voters’ preference orders is called
a profile. A winner method is a method that on the base of a profile outputs a set
of winners (a subset of C, possibly empty) – of course, we prefer getting a single
winner. Formally, if we denote a set of all profiles by ⌃, then a winner method is
a function f : ⌃ ! 2C. If by Or(C) we denote the set of all (linear) orders in C,
then ⌃ = {M : V ! Or(C)}.

Now consider the following example. Assume that five candidates: Pooh, Tig-
ger, Rabbit, Kanga and Eeyore apply for a title of Milne’s Star and it will be
decided by 55 voters. Of course, it is possible that two di↵erent voters will rank
candidates with di↵erent orders (as 5! > 55). We consider much simpler profile:
there are only six possible ordered preferences. They are shown in Table 7 (in the
first row, numbers of voters that rank candidates this way is written).

14 11 10 9 6 5
1. P T K R E P
2. E K R E K R
3. T R E K R E
4. R E T T T T
5. K P P P P K

Table 7.

Now consider five di↵erent voting methods.
In so-called plurality method the winner is the candidate who is ranked as the

first choice of the most voters. Here Pooh wins with 19 votes.
Now take so-called president method. Then the winner is the candidate who

gets more than 50% first position. If such a candidate does not exist, we take two
candidates with the greatest number of first-place votes and compare them. In
our case, the winner is Tigger, who in second round conquers Pooh.

Another method is the Hare method. We find the candidate (or candidates)
who has the fewer first-place votes and eliminate this candidate. Then voters
rearrange their lists (removing that candidate and moving up all the candidates
that were ranked lower), and vote again. We proceed up to the moment when
there is a candidate with a majority of first-place votes. This method was for
many years used in the elections of rector in many Polish universities. In our
profile, Kanga wins (the first eliminated candidate is Eeyore, then Rabbit, Tigger
and Pooh).

We may use points. If there are n candidates, we may assign points for positions
of voters’ lists: n � 1 points for the first position, n � 2 points for the second
position, . . . , 0 points for the last position. A sum of points obtained by candidates
in all lists in the profiles determine the winner. This is called the Borda Count
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method. In the case of the profile presented in Table 7 Eeyore is the winner with
134 points (R:129, K:109, T:102, P:76).

Now we need to find a profile where Rabbit wins. We may use pairwise compar-
ison between candidates. For two candidates, say A and B, let’s count how many
voters rank A above B and conversely. If the number of voters that rank A above
B is greater than the number of voters that rank B above A, then A conquers B.
If there is a candidate who conquers anyone else, then that candidate seems to
be an obvious winner. In our case, Rabbit is such a candidate (we have: R:P –
36:19, R:T – 30:25, R:M – 35:20, R:K – 28:27).

The disadvantage of this metod is that in several cases it will not determine
a winner (there is a famous Condorcet paradox : A conquers B, B conquers C,
C conquers A). But it is easy to repair this method; a modified method is called
the Copeland method. If A conquers B in pairwise comparison, A gets one point. If
the comparison results in a tie, a method gives half a point to A and half a point to
B. Finally, a candidate (candidates in the case of a tie) with the greatest number
of points is a winner. This method is used, for example, in the Handball World
Championship or the Handball European Championship, in preliminary round
(with points doubled by 2, i.e. 2, 1, 0). For many years it was used in football
championship, now 2 point for a winner are replaced by 3 points.

Note that the profile was not artificial. Moreover, all methods are quite natural
and logical. In fact, all of them have been used somewhere. However, each of
them gives another winner.

Anyway, note that in each of above methods the winner had a significant sup-
port. This is one of advantages of such a method in comparison to the election
of representatives on the base of the list of a party in an apportionment method.
Here the case where a winner gets a very small number of votes is impossible.

Also in the case of voting methods that select the winner, there is the theorem
on the nonexistence of a good method. Before presenting a fundamental theorem
we introduce some notation and formulate some conditions.

Consider more detailed voting method. As a result of voting, we do not pick up
only winners, but a weak order in the set of candidates. A weak order is defined
as follows. Take an equivalence relation ⇠ in C and consider a linear order in
the quotient space C/ ⇠. Then for x, y 2 C we say that x < y if and only if
[x]⇠ < [y]⇠. In other words, we rank elements of C and admit ties. If as a result
of voting we consider a weak order in C, we call a method an order voting method.
Of course, a winner method is a particular case of an order voting method – we
have two classes in the set C: winners and losers.

Formally, if we denote by We(C) the set of all weak orders in C, the order
voting method is a function f : ⌃ ! We(C); recall that ⌃ = {M : V ! Or(C)}.
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The notation A
v,M
< B means that in profile M voter v prefers B to A. The

notation A <
M

B means that as a result in profile M candidate B is ranked higher

than A.
An order voting method

• is anonymous if

8M 2 ⌃ 8w, v 2 V
w and v exchange their votes ) result does not change;

• satisfies Pareto rule if

8M 2 ⌃ 8A,B 2 C

(8v 2 V : A
v,M
< B) ) A <

M
B;

• satisfies Independence of Irrelevant Alternatives (IIA) if

8M,N 2 ⌃ and 8A,B 2 C

(8v 2 V : A
v,M
< B , A

v,N
< B) ) (A <

M
B , A <

N
B)

In other words, a method is anonymous if the votes of all voters are equal. The
Pareto rule means that if all voters prefer B to A, then as a result B is ranked
above A. The condition IIA means that if voters change their votes but none of
them changes the relation between A and B, then the final relation between A and
B will not change (that is, the opinion about other candidates should not impact
on the final relation of A and B; we may also say that the final preference between
two candidates depends only on the individual voter’s preferences between those
two candidates).

Fundamental Arrow’s Impossibility Theorem proved in 1950 by Kenneth Arrow
(Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel winner
in 1972), see [1] and [2], says:

Theorem 3.1 (Arrow’s Impossibility Theorem). If C contains at least 3 elements
and V contains at least 2 elements, then there is no anonymous order voting
method satisfying both the Pareto rule and IIA.

The theorem may be presented in slightly more general way. For this purpose,
introduce the next definition. By the dictatorship we mean a method where the
final results is identical with a vote of one particular voter. Of course, this method
is not anonymous. Arrow’s Theorem says:

Theorem 3.2 (Arrow’s Impossibility Theorem). If C contains at least 3 elements
and V contains at least 2 elements, then the only order voting method satisfying
both the Pareto rule and IIA is dictatorship.

Arrow’s Theorem may be formulated in more general mathematical form, with-
out referring to voting. Note that the Pareto rule and IIA may be formulated just
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for ordered sets. Let us keep the notation introduced above and present a next
definition.

A set T ⇢ V is called a decision set if

8M 2 ⌃ 8A,B 2 C (8v 2 T : A
v,M
< B) ) A <

M
B.

In the language of voting this means that if all voters in T prefer B to A, then
finally B is ranked above A.

In the following theorem we do not assume that V and C are finite. For the
basic information of filters, see for example [3].

Now we have

Theorem 3.3 (Arrow’s Theorem in form of ultrafilters). If C contains at least
3 elements and V contains at least 2 elements, f : ⌃ ! We(C), f satisfies both
the Pareto rule and IIA, then the family of decision sets is an ultrafilter on V.

Arrow’s Impossibility Theorem for voting theory is an immediate consequence
of above theorem, as an ultrafilter on a finite set must be generated by one element,
so one voter determines the final result.

Arrow’s Theorem in form of ultrafilters was first published by Alan P. Kirman
and Dieter Sondermann in [7]. The authors credit this idea to Don Brown and
Peter S. Fishburn.

For more information on Arrow’s Impossibility Theorem see [8], [10] and [14].

4. Methods of k votes

The topic of the last chapter are methods of k votes. Again, first introduce the
terminology.

As previously, assume that each voter ranks candidates (there are n candidates).
The method is called a positional method and denoted P (a1, a2, . . . , an) if a candi-
date obtains a1 points for each first-place vote, a2 points for each second-place vote
and so on. We assume that a1, . . . , an are integers and a1 � a2 � . . . � an � 0.

We have already considered such methods. The plurality method is a positional
method P (1, 0, . . . , 0). The Borda Count method is a positional method P (n �
1, n� 2, . . . , 1, 0).

Now we consider a method

P (1, 1, . . . , 1| {z }
k times

, 0, 0, . . . , 0| {z }
n�k times

)

and denote it by Pn(k). In other words, each voter votes for k candidates, treating
them equally, although the voter ranked these k candidates. If as the result we
obtain one winner (or more in the case of ties) we call this method the method of
k votes. If as result we obtain k winners (or more in the case of a tie in the last
winning position) we call this method the weak method of k votes. Both methods
are in use on several occasions. For example, the weak method of k votes is
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used in many Polish universities in the election of students’ representatives or
young academic sta↵ representatives in the Faculty Council. Sometimes election
threshold 50% for a candidate is required. Then if l candidates (l < k) obtain this
threshold, they are elected and the voters vote again according to their lists, but
now the list of candidates is reduced to 2(k � l) candidates with greatest scores
in the first round (not elected yet) and so on.

First take into account a method of k votes. Consider profiles presented in
Table 8 and Table 9.

4 3 6
1. A A C

2. B C B

3. C B A

Table 8.

In profile presented in Table 8 there are 13 voters and 3 candidates. A wins
under the method of 1 vote (with 7 votes), B wins under the method of 2 votes
(with 10 votes). Considering here the method of 3 votes is useless, as all the
candidates would have equal results, but we may find the winner under the Borda
Count method. Here it is C with 15 points (A obtains 14 points, B obtains 10
points).

4 2 2 1
1. D A A A

2. B B C D

3. C C D C

4. A D B B

Table 9.

In profile presented in Table 9, A wins under the method of 1 vote (with 5
votes), B wins under the method of 2 votes (with 6 votes), C wins under the
method of 3 votes (with 9 votes), D wins under the Borda Count method with 16
points (A: 15, B: 12, C: 11).

This paradoxical e↵ect may be generalized for each number of candidates greater
than 2. In 1992 Donald G. Saari proved the following theorem.

Theorem 4.1 (Saari’s Theorem). For any n � 3 and the set of candidates
{c1, c2, . . . , cn} there exist a profile so that ck wins the election under the method of
k votes Pn(k) for k = 1, 2, . . . , n� 1 and cn wins under the Borda Count method.
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The theorem is presented and clearly explained (without proof) in [11]. The
original proof was published in [12] and was based on advanced geometrical theory
constructed in this purpose. However, the theorem may be proved elementary
([5]).

Now turn to weak method of k votes.
The weak method of two votes was used in the election to Polish Senate in

1990–2010. In all (except two) election wards two senators were elected. Consider
the example presented in Table 10.

30% 30% 20% 20%
1. Pooh Pooh Rabbit Tigger
2. Rabbit Tigger Tigger Rabbit
3. Tigger Rabbit Pooh Pooh

Table 10.

If only one candidate was elected in one-vote method, Pooh would be the win-
ner. It is obvious that Pooh is the best candidate, as 60% of voters put Pooh in
the first place. However, in the weak method of 2 votes Rabbit and Tigger win
(with 70% votes each, and Pooh still keeps his 60% votes).

This paradoxical result may be generalized as follows.

Theorem 4.2. If the set of candidates C contains at least 2n + 1 candidates
(c1, . . . , c2n+1 2 C), then for each n � 1 there exists such a profile that in voting
with weak method of n votes the winners are c1, . . . , cn, and in voting with weak
method of n + 1 votes the winners are cn+1, . . . , c2n+1. Moreover, in both cases
each winner is supported by more than 50% voters.

Proof. Consider the following profile (in Table 11 rankings of first n+1 positions
are presented). Assume that there are v voters.

k1 k2 ... kn kn+1 kn+2 ... k2n+1

1. c1 c2 ... cn cn+1 cn+2 ... c2n+1

2. c2 c3 ... c1 cn+2 cn+3 ... cn+1

3. c3 c4 ... c2 cn+3 cn+4 ... cn+2

... ... ...
n� 1. cn�1 cn ... cn�2 c2n�1 c2n ... c2n�2

n. cn c1 ... cn�1 c2n c2n+1 ... c2n�1

n+ 1. ? c2n+1 cn+1 ... c2n

Table 11.
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The numbers of voters are:

k1 = k2 = . . . = kn = v

✓
1

2n
+ "

◆
,

kn+1 = kn+2 = . . . = k2n+1 = v

✓
1

2(n+ 1)
� "+

"

n+ 1

◆

In the (n+1)th positions in the lists of voters k1, . . . , kn (denoted by ?) candi-
dates cn+1, cn+2, . . . c2n+1 are posed, each of them v

1+2n"
2(n+1) times.

In the position n+2 we put each of candidates c1, c2, . . . cn on v
�

1
2n � "

�
lists and

each of candidates cn+1, cn+2, . . . c2n+1 on v
2n"+1
2(n+1) lists, of course each candidate is

placed on the list that this candidate was not ranked before. The same procedure
is applied to the position n+ 3 and so on, up to the position 2n+ 1.

If the number of candidates is greater than 2n+1, then we put candidate c2n+2

in the position 2n+ 2 in each list, and so on.
Now we need to show the following properties:

• the construction of the profile is correct

• v
�

1
2n + "

�
> v

⇣
1

2(n+1) � "+ "
n+1

⌘

• nv
�

1
2n + "

�
< nv

⇣
1

2(n+1) � "+ "
n+1

⌘
+ v

n+1

• n
�

1
2n + "

�
>

1
2

• n

⇣
1

2(n+1) � "+ "
n+1

⌘
+ 1

n+1 >
1
2

This can be done be simple calculations. Then, for " and n satisfying those
conditions (it turns out that it is enough to assume that " < 1

2(2n2+n)) and chosen

in such a way that a suitable numbers are integers, we get the desired result. ⇤
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