

ON THE MONOID OF COFINITE PARTIAL ISOMETRIES OF N WITH A BOUNDED FINITE NOISE

OLEG GUTIK & PAVLO KHYLYNSKYI

ABSTRACT. In the paper we study algebraic properties of the monoid $\mathbb{IN}_{\infty}^{g[j]}$ of cofinite partial isometries of the set of positive integers N with the bounded finite noise j. For the monoids $\mathbb{IN}_{\infty}^{g[j]}$ we prove counterparts of some classical results of Eberhart and Selden describing the closure of the bicyclic semigroup in a locally compact topological inverse semigroup. In particular we show that for any positive integer j every Hausdorff shift-continuous topology τ on $\mathbb{IN}_{\infty}^{g[j]}$ is discrete and if $\mathbb{IN}_{\infty}^{g[j]}$ is a proper dense subsemigroup of a Hausdorff semitopological semigroup S, then $S \setminus \mathbb{IN}_{\infty}^{g[j]}$ is a closed ideal of S, and moreover if S is a topological inverse semigroup then $S \setminus \mathbb{IN}_{\infty}^{g[j]}$ is a topological group. Also we describe the algebraic and topological structure of the closure of the monoid $\mathbb{IN}_{\infty}^{g[j]}$ in a locally compact topological inverse semigroup.

KEYWORDS: partial isometry, inverse semigroup, partial bijection, bicyclic monoid, closure, locally compact, topological inverse semigroup

MSC2020: 20M18, 20M20, 20M30, 22A15, 54A10, 54D45

Received 29 April 2021; revised 19 July 2021; accepted 29 July 2021

1. INTRODUCTION AND PRELIMINARIES

In this paper we shall follow the terminology of [9, 12, 27, 29]. We shall denote the first infinite cardinal by ω and the cardinality of a set A by |A|. By $cl_X(A)$ we denote the closure of subset A in a topological space X.

A semigroup S is called *inverse* if for any element $x \in S$ there exists a unique $x^{-1} \in S$ such that $xx^{-1}x = x$ and $x^{-1}xx^{-1} = x^{-1}$. The element x^{-1} is called the *inverse of* $x \in S$. If S is an inverse semigroup, then the function inv: $S \to S$ which assigns to every element x of S its inverse element x^{-1} is called the *inversion*.

^{© 2021} O. Gutik & P. Khylynsky — This is an open access article licensed under the Creative Commons Attribution-NonCommercial-NoDerivs License (www.creativecommons.org/licenses/by-nc-nd/4.0/) https://doi.org/10.2478/9788366675360-010.

If S is a semigroup, then we shall denote the subset of all idempotents in S by E(S). If S is an inverse semigroup, then E(S) is closed under multiplication and we shall refer to E(S) as a *band* (or the *band of S*).

If S is an inverse semigroup then the semigroup operation on S determines the following partial order \preccurlyeq on S: $s \preccurlyeq t$ if and only if there exists $e \in E(S)$ such that s = te. This order is called the *natural partial order* on S and it induces the *natural partial order* on the semilattice E(S) [30].

An inverse subsemigroup T of an inverse semigroup S is called *full* if E(T) = E(S).

A congruence \mathfrak{C} on a semigroup S is called a *group congruence* if the quotient semigroup S/\mathfrak{C} is a group. Any inverse semigroup S admits the *minimum group congruence* \mathfrak{C}_{mg} :

$$a\mathfrak{C}_{\mathbf{mg}}b$$
 if and only if there exists $e \in E(S)$ such that $ea = eb$.

Also, we say that a semigroup homomorphism $\mathfrak{h}: S \to T$ is a group homomorphism if the image $(S)\mathfrak{h}$ is a group, and $\mathfrak{h}: S \to T$ is trivial if it is either an isomorphism or annihilating.

The bicyclic monoid $\mathscr{C}(p,q)$ is the semigroup with the identity 1 generated by two elements p and q subjected only to the condition pq = 1. The semigroup operation on $\mathscr{C}(p,q)$ is determined as follows:

$$q^k p^l \cdot q^m p^n = q^{k+m-\min\{l,m\}} p^{l+n-\min\{l,m\}}$$

It is well known that the bicyclic monoid $\mathscr{C}(p,q)$ is a bisimple (and hence simple) combinatorial *E*-unitary inverse semigroup and every non-trivial congruence on $\mathscr{C}(p,q)$ is a group congruence [12].

If $\alpha: X \to Y$ is a partial map, then we shall denote the domain and the range of α by dom α and ran α , respectively. A partial map $\alpha: X \to Y$ is called *cofinite* if both sets $X \setminus \text{dom } \alpha$ and $Y \setminus \text{ran } \alpha$ are finite.

Let \mathscr{I}_{λ} denote the set of all partial one-to-one transformations of a non-zero cardinal λ together with the following semigroup operation:

$$x(\alpha\beta) = (x\alpha)\beta$$
 if $x \in \operatorname{dom}(\alpha\beta) = \{y \in \operatorname{dom} \alpha \colon y\alpha \in \operatorname{dom} \beta\}$, for $\alpha, \beta \in \mathscr{I}_{\lambda}$.

The semigroup \mathscr{I}_{λ} is called the symmetric inverse (monoid) semigroup over the cardinal λ (see [12]). The symmetric inverse semigroup was introduced by Wagner [30] and it plays a major role in the theory of semigroups. By $\mathscr{I}_{\lambda}^{cf}$ is denoted a subsemigroup of injective partial selfmaps of λ with cofinite domains and ranges in \mathscr{I}_{λ} . Obviously, $\mathscr{I}_{\lambda}^{cf}$ is an inverse submonoid of the semigroup \mathscr{I}_{λ} . The semigroup $\mathscr{I}_{\lambda}^{cf}$ is called the monoid of injective partial cofinite selfmaps of λ [20].

A partial transformation $\alpha \colon (X,d) \to (X,d)$ of a metric space (X,d) is called isometric or a partial isometry, if $d(x\alpha, y\alpha) = d(x, y)$ for all $x, y \in \text{dom } \alpha$. It is obvious that the composition of two partial isometries of a metric space (X,d) is a partial isometry, and the converse partial map to a partial isometry is a partial isometry, too. Hence the set of partial isometries of a metric space (X,d) with the operation of composition of partial isometries is an inverse submonoid of the symmetric inverse monoid over the cardinal |X|. Also, it is obvious that the set of partial cofinite isometries of a metric space (X, d) with the operation the composition of partial isometries is an inverse submonoid of the monoid of injective partial cofinite selfmaps of the cardinal |X|.

We endow the sets \mathbb{N} and \mathbb{Z} with the standard linear order.

The semigroup ID_{∞} of all partial cofinite isometries of the set of integers \mathbb{Z} with the usual metric $d(n,m) = |n-m|, n,m \in \mathbb{Z}$, was studied in the papers [7, 8, 21].

Let \mathbb{IN}_{∞} be the set of all partial cofinite isometries of the set of positive integers N with the usual metric $d(n,m) = |n-m|, n,m \in \mathbb{N}$. Then \mathbb{IN}_{∞} with the operation of composition of partial isometries is an inverse submonoid of \mathscr{I}_{ω} . The semigroup IN_{∞} of all partial cofinite isometries of positive integers is studied in [22]. There we described the Green relations on the semigroup IN_{∞} , its band and proved that IN_{∞} is a simple *E*-unitary *F*-inverse semigroup. Also in [22], the least group congruence \mathfrak{C}_{mg} on \mathbb{IN}_{∞} is described and there it is proved that the quotient-semigroup $I\mathbb{N}_{\infty}/\mathfrak{C}_{mg}$ is isomorphic to the additive group of integers $\mathbb{Z}(+)$. An example of a non-group congruence on the semigroup \mathbb{IN}_{∞} is presented. Also it is proved that a congruence on the semigroup IN_{∞} is a group congruence if and only if its restriction onto an isomorphic copy of the bicyclic semigroup in $I\mathbb{N}_{\infty}$ is a group congruence. In [24] it was shown that the monoid $I\mathbb{N}_{\infty}$ does not embed isomorphically into the semigroup ID_{∞} . Moreover every non-annihilating homomorphism $\mathfrak{h}: \mathbb{IN}_{\infty} \to \mathbb{ID}_{\infty}$ has the following property: the image $(\mathbb{IN}_{\infty})\mathfrak{h}$ is isomorphic either to \mathbb{Z}_2 or to $\mathbb{Z}(+)$. Also it is proved that \mathbb{IN}_{∞} does not have a finite set of generators, and moreover it does not contain a minimal generating set.

Later by \mathbb{I} we denote the unit elements of \mathbb{IN}_{∞} .

Remark 1.1. We observe that the bicyclic semigroup is isomorphic to the semigroup $\mathscr{C}_{\mathbb{N}}$ which is generated by partial transformations α and β of the set of positive integers \mathbb{N} , defined as follows:

dom
$$\alpha = \mathbb{N}$$
, ran $\alpha = \mathbb{N} \setminus \{1\}$, $(n)\alpha = n+1$

and

dom $\beta = \mathbb{N} \setminus \{1\},$ ran $\beta = \mathbb{N},$ $(n)\beta = n-1$

(see Exercise IV.1.11(*ii*) in [28]). It is obvious that $\mathbb{I} = \alpha\beta$ and $\mathscr{C}_{\mathbb{N}}$ is a submonoid of $\mathbb{I}\mathbb{N}_{\infty}$.

The semigroup of monotone (order preserving) injective partial transformations φ of \mathbb{N} such that the sets $\mathbb{N} \setminus \operatorname{dom} \varphi$ and $\mathbb{N} \setminus \operatorname{ran} \varphi$ are finite was introduced in [18] and there it was denoted by $\mathscr{I}_{\infty}^{\prec}(\mathbb{N})$. Obviously, $\mathscr{I}_{\infty}^{\prec}(\mathbb{N})$ is an inverse subsemigroup of the semigroup \mathscr{I}_{ω} . The semigroup $\mathscr{I}_{\infty}^{\prec}(\mathbb{N})$ is called *the semigroup of cofinite monotone partial bijections* of \mathbb{N} . In [18] Gutik and Repovš studied

properties of the semigroup $\mathscr{I}_{\infty}^{\nearrow}(\mathbb{N})$. In particular, they showed that $\mathscr{I}_{\infty}^{\nearrow}(\mathbb{N})$ is an inverse bisimple semigroup and all of its non-trivial group homomorphisms are either isomorphisms or group homomorphisms. It is obvious that \mathbb{IN}_{∞} is an inverse submonoid of $\mathscr{I}_{\infty}^{\nearrow}(\mathbb{N})$.

A partial map $\alpha \colon \mathbb{N} \to \mathbb{N}$ is called *almost monotone* if there exists a finite subset A of \mathbb{N} such that the restriction $\alpha \mid_{\mathbb{N}\setminus A} : \mathbb{N} \setminus A \to \mathbb{N}$ is a monotone partial map. transformations of \mathbb{N} such that the sets $\mathbb{N} \setminus \operatorname{dom} \varphi$ and $\mathbb{N} \setminus \operatorname{ran} \varphi$ are finite for all $\varphi \in \mathscr{I}_{\infty}^{\mathcal{V}}(\mathbb{N})$. Obviously, $\mathscr{I}_{\infty}^{\mathcal{V}}(\mathbb{N})$ is an inverse subsemigroup of the semigroup \mathscr{I}_{ω} and the semigroup $\mathscr{I}_{\infty}^{\nearrow}(\mathbb{N})$ is an inverse subsemigroup of $\mathscr{I}_{\infty}^{\nearrow}(\mathbb{N})$ too. The semigroup $\mathscr{I}_{\infty}^{\not \upharpoonright}(\mathbb{N})$ is called the semigroup of cofinite almost monotone injective partial transformations of N. In the paper [11] the semigroup $\mathscr{I}_{\infty}^{\mathbb{P}^{n}}(\mathbb{N})$ is studied. In particular, it was shown that the semigroup $\mathscr{I}_{\infty}^{\not \nearrow}(\mathbb{N})$ is inverse, bisimple and all of its non-trivial group homomorphisms are either isomorphisms or group homomorphisms. In the paper [23] we showed that every automorphism of a full inverse subsemigroup of $\mathscr{I}_{\infty}^{\wedge}(\mathbb{N})$ which contains the semigroup $\mathscr{C}_{\mathbb{N}}$ is the identity map. Also there we constructed a submonoid $\mathbf{IN}_{\infty}^{[\underline{1}]}$ of $\mathscr{I}_{\infty}^{\not\upharpoonright}(\mathbb{N})$ with the following property: if S be an inverse subsemigroup of $\mathscr{I}_{\infty}^{\not\upharpoonright}(\mathbb{N})$ such that S contains $\mathbb{IN}_{\infty}^{[\underline{1}]}$ as a submonoid, then every non-identity congruence \mathfrak{C} on S is a group congruence. We show that if S is an inverse submonoid of $\mathscr{I}_{\infty}^{\mathscr{V}}(\mathbb{N})$ such that S contains $\mathscr{C}_{\mathbb{N}}$ as a submonoid then S is simple and the quotient semigroup $S/\mathfrak{C}_{\mathbf{mg}}$, where $\mathfrak{C}_{\mathbf{mg}}$ is minimum group congruence on S, is isomorphic to the additive group of integers. Also, topologizations of inverse submonoids of $\mathscr{I}_{\infty}^{\not\upharpoonright}(\mathbb{N})$ and embeddings of such semigroups into compact-like topological semigroups established in [11, 23]. Similar results for semigroups of cofinite almost monotone partial bijections and cofinite almost monotone partial bijections of \mathbb{Z} were obtained in [19].

Next we need some notions defined in [22] and [23]. For an arbitrary positive integer n_0 we denote $[n_0) = \{n \in \mathbb{N} : n \ge n_0\}$. Since the set of all positive integers is well ordered, the definition of the semigroup $\mathscr{I}_{\infty}^{\not{\succ}}(\mathbb{N})$ implies that for every $\gamma \in \mathscr{I}_{\infty}^{\not{\restriction}}(\mathbb{N})$ there exists the smallest positive integer $n_{\gamma}^{\mathbf{d}} \in \operatorname{dom} \gamma$ such that the restriction $\gamma|_{[n_{\gamma}^{\mathbf{d}})}$ of the partial map $\gamma \colon \mathbb{N} \to \mathbb{N}$ onto the set $[n_{\gamma}^{\mathbf{d}})$ is an element of the semigroup $\mathscr{C}_{\mathbb{N}}$, i.e., $\gamma|_{[n_{\gamma}^{\mathbf{d}})}$ is a some shift of $[n_{\gamma}^{\mathbf{d}})$. For every $\gamma \in \mathscr{I}_{\infty}^{\not{\restriction}^{\gamma}}(\mathbb{N})$ we put $\overrightarrow{\gamma} = \gamma|_{[n_{\gamma}^{\mathbf{d}})}$, i.e.

$$\operatorname{dom} \overrightarrow{\gamma} = \begin{bmatrix} n_{\gamma}^{\mathbf{d}} \end{bmatrix}, \quad (x) \overrightarrow{\gamma} = (x)\gamma \quad \text{for all } x \in \operatorname{dom} \overrightarrow{\gamma} \quad \text{and} \quad \operatorname{ran} \overrightarrow{\gamma} = (\operatorname{dom} \overrightarrow{\gamma})\gamma.$$

Also, we put

$$\underline{n}_{\gamma}^{\mathbf{d}} = \min \operatorname{dom} \gamma \qquad \text{for} \quad \gamma \in \mathscr{I}_{\infty}^{\not \triangleright}(\mathbb{N}).$$

It is obvious that $\underline{n}_{\gamma}^{\mathbf{d}} = n_{\gamma}^{\mathbf{d}}$ when $\gamma \in \mathscr{C}_{\mathbb{N}}$, and $\underline{n}_{\gamma}^{\mathbf{d}} < n_{\gamma}^{\mathbf{d}}$ when $\gamma \in \mathscr{I}_{\infty}^{\not{\succ}}(\mathbb{N}) \setminus \mathscr{C}_{\mathbb{N}}$. Also for any $\gamma \in \mathbb{I}\mathbb{N}_{\infty}$ we denote

$$\underline{n}_{\gamma}^{\mathbf{r}} = (\underline{n}_{\gamma}^{\mathbf{d}})\gamma \quad \text{and} \quad n_{\gamma}^{\mathbf{r}} = (n_{\gamma}^{\mathbf{d}})\gamma.$$

The results of Section 3 of [24] imply that $n_{\gamma}^{\mathbf{r}} - \underline{n}_{\gamma}^{\mathbf{r}} = n_{\gamma}^{\mathbf{d}} - \underline{n}_{\gamma}^{\mathbf{d}}$ for any $\gamma \in \mathbf{IN}_{\infty}$, and moreover for any non-negative integer j

$$\mathbf{I}\mathbb{N}_{\infty}^{\boldsymbol{g}[j]} = \left\{ \gamma \in \mathbf{I}\mathbb{N}_{\infty} \colon n_{\gamma}^{\mathbf{d}} - \underline{n}_{\gamma}^{\mathbf{d}} \leqslant j \right\}$$

is a simple inverse subsemigroup of \mathbb{IN}_{∞} such that \mathbb{IN}_{∞} admits the following infinite semigroup series

$$\mathscr{C}_{\mathbb{N}} = \mathbf{I} \mathbb{N}_{\infty}^{\boldsymbol{g}[0]} = \mathbf{I} \mathbb{N}_{\infty}^{\boldsymbol{g}[1]} \subsetneqq \mathbf{I} \mathbb{N}_{\infty}^{\boldsymbol{g}[2]} \subsetneqq \mathbf{I} \mathbb{N}_{\infty}^{\boldsymbol{g}[3]} \subsetneqq \cdots \subsetneqq \mathbf{I} \mathbb{N}_{\infty}^{\boldsymbol{g}[k]} \subsetneqq \cdots \subset \mathbf{I} \mathbb{N}_{\infty}$$

For any positive integer k the semigroup $\mathbb{IN}_{\infty}^{g[k]}$ is called the monoid of cofinite isometries of positive integers with the noise k.

A (*semi*)topological semigroup is a topological space with a (separately) continuous semigroup operation. An inverse topological semigroup with continuous inversion is called a *topological inverse semigroup*.

A topology τ on a semigroup S is called:

- a semigroup topology if (S, τ) is a topological semigroup;
- an *inverse semigroup* topology if (S, τ) is a topological inverse semigroup;
- a shift-continuous topology if (S, τ) is a semitopological semigroup.

The bicyclic monoid admits only the discrete semigroup Hausdorff topology [13]. Bertman and West in [6] extended this result for the case of Hausdorff semitopological semigroups. Stable and Γ -compact topological semigroups do not contain the bicyclic monoid [1, 25, 26]. The problem of embedding the bicyclic monoid into compact-like topological semigroups was studied in [3, 4, 5, 17].

In this paper we study algebraic properties of the monoid $\mathbb{IN}_{\infty}^{g[j]}$ and extend results of the papers [13] and [6] to the semigroups $\mathbb{IN}_{\infty}^{g[j]}$, $j \ge 0$. In particular we show that for any positive integer j every Hausdorff shift-continuous topology τ on $\mathbb{IN}_{\infty}^{g[j]}$ is discrete and and if $\mathbb{IN}_{\infty}^{g[j]}$ is a proper dense subsemigroup of a Hausdorff semitopological semigroup S, then $S \setminus \mathbb{IN}_{\infty}^{g[j]}$ is a closed ideal of S, and moreover if S is a topological inverse semigroup then $S \setminus \mathbb{IN}_{\infty}^{g[j]}$ is a topological group. Also we describe the algebraic and topological structure of the closure of the monoid $\mathbb{IN}_{\infty}^{g[j]}$ in a locally compact topological inverse semigroup.

Latter in this paper without loss of generality we may assume that j is an arbitrary positive integer ≥ 2 .

2. Algebraic properties of the monoid $\mathbb{IN}_{\mathcal{G}}^{\mathcal{G}[j]}$

The following simple proposition describes Green's relations on the monoid $\mathbb{IN}_{\infty}^{g[j]}$.

Proposition 2.1. For elements γ and δ of the semigroup $\mathbb{IN}_{\infty}^{g[j]}$ the following statements hold:

- (i) $\gamma \mathscr{L} \delta$ in $\mathbb{IN}_{\infty}^{g[j]}$ if and only if dom $\gamma = \operatorname{dom} \delta$;
- (ii) $\gamma \mathscr{R} \delta$ in $\mathbb{IN}_{\infty}^{\mathbf{g}[j]}$ if and only if $\operatorname{ran} \gamma = \operatorname{ran} \delta$;
- (iii) $\gamma \mathscr{H} \delta$ in $\mathbb{IN}_{\infty}^{g[j]}$ if and only if $\gamma = \delta$;
- (iv) $\gamma \mathscr{D}\delta$ in $\mathbb{IN}_{\infty}^{g[j]}$ if and only if dom γ (ran γ) and dom δ (ran δ) are isometric subsets of \mathbb{N} , i.e., there exists an isometry from dom γ (ran γ) onto dom δ (ran δ);
- (v) $\gamma \not \not J \delta$ in $\mathbb{IN}_{\infty}^{g[j]}$, i.e., $\mathbb{IN}_{\infty}^{g[j]}$ is a simple semigroup.

Proof. Statements (i), (ii) and (iii) immediately follow from Proposition 3.2.11 of [27] and corresponding statements of Proposition 1 of [22].

Statement (iv) follows from the definition of the monoid and Proposition 3.2.5 of [27].

Statement (v) follows from Theorem 5 of [23].

Proposition 2.2 follows from the definition of the natural partial order \preccurlyeq on an inverse semigroup and the statement that every element of the monoid $\mathbb{IN}_{\infty}^{g[j]}$ is a partial shift of the integers (see [22, Lemma 1]).

Proposition 2.2. Let γ and δ be elements of the monoid $\mathbb{IN}_{\infty}^{g[j]}$. Then the following conditions are equivalent:

(i)
$$\gamma \preccurlyeq \delta$$
 in $\mathbb{IN}_{\infty}^{\boldsymbol{g}[j]}$
(ii) $n_{\gamma}^{\mathbf{r}} - n_{\gamma}^{\mathbf{d}} = n_{\delta}^{\mathbf{r}} - n_{\delta}^{\mathbf{d}}$ and dom $\gamma \subseteq \operatorname{dom} \delta$;
(iii) $n_{\gamma}^{\mathbf{r}} - n_{\gamma}^{\mathbf{d}} = n_{\delta}^{\mathbf{r}} - n_{\delta}^{\mathbf{d}}$ and ran $\gamma \subseteq \operatorname{ran} \delta$.

It is obvious that in statements (*ii*) and (*iii*) of Proposition 2.2 we may replace the symbols $n_{\gamma}^{\mathbf{r}}$ and $n_{\gamma}^{\mathbf{d}}$ by $\underline{n}_{\gamma}^{\mathbf{r}}$ and $\underline{n}_{\gamma}^{\mathbf{d}}$, respectively.

The definition of the minimum group congruence \mathfrak{C}_{mg} on $\mathbb{IN}_{\infty}^{g[j]}$ and Proposition 2.2 imply the following proposition.

Proposition 2.3. Let γ and δ be elements of the monoid $\mathbb{IN}_{\infty}^{\mathbf{g}[j]}$. Then $\gamma \mathfrak{C}_{\mathbf{mg}} \delta$ in $\mathbb{IN}_{\infty}^{\mathbf{g}[j]}$ if and only if $n_{\gamma}^{\mathbf{r}} - n_{\gamma}^{\mathbf{d}} = n_{\delta}^{\mathbf{r}} - n_{\delta}^{\mathbf{d}}$. Moreover, the quotient semigroup $\mathbb{IN}_{\infty}^{\mathbf{g}[j]}/\mathfrak{C}_{\mathbf{mg}}$ is isomorphic to the additive group of integers $\mathbb{Z}(+)$ by the map

$$\pi_{\mathfrak{C}_{\mathbf{mg}}} \colon \mathbf{IN}_{\infty}^{\boldsymbol{g}[j]} \to \mathbb{Z}(+), \quad \gamma \mapsto n_{\delta}^{\mathbf{r}} - n_{\delta}^{\mathbf{d}}.$$

Example 2.4. We put $\mathcal{C}I\mathbb{N}_{\infty}^{g[j]} = I\mathbb{N}_{\infty}^{g[j]} \sqcup \mathbb{Z}(+)$ and extend the multiplications from $I\mathbb{N}_{\infty}^{g[j]}$ and $\mathbb{Z}(+)$ onto $\mathcal{C}I\mathbb{N}_{\infty}^{g[j]}$ in the following way:

$$k \cdot \gamma = \gamma \cdot k = k + (\gamma) \pi_{\mathfrak{C}_{\mathbf{mg}}} \in \mathbb{Z}(+), \quad \text{for all} \quad k \in \mathbb{Z}(+) \quad \text{and} \quad \gamma \in \mathbf{IN}_{\infty}^{\mathbf{g}[j]}.$$

By Theorem 2.17 from [9, Vol. 1, p. 77] so defined binary operation is a semigroup operation on $\mathcal{CIN}_{\infty}^{g[j]}$ such that $\mathbb{Z}(+)$ is an ideal in $\mathcal{CIN}_{\infty}^{g[j]}$. Also, this semigroup

operation extends the natural partial order \preccurlyeq from $\mathbb{IN}_{\infty}^{g[j]}$ onto $\mathcal{CIN}_{\infty}^{g[j]}$ in the following way:

- (i) all distinct elements of $\mathbb{Z}(+)$ are pair-wise incomparable;
- (*ii*) $k \preccurlyeq \gamma$ if and only if $n_{\gamma}^{\mathbf{r}} n_{\gamma}^{\mathbf{d}} = k$ for $k \in \mathbb{Z}(+)$ and $\gamma \in \mathbf{IN}_{\infty}^{\boldsymbol{g}[j]}$.

For any $x \in \mathcal{C}I\mathbb{N}_{\infty}^{g[j]}$ we denote $\uparrow_{\preccurlyeq} x = \{ y \in \mathcal{C}I\mathbb{N}_{\infty}^{g[j]} \colon x \preccurlyeq y \}.$

By Proposition 7 of [22] the map $\mathfrak{h} \colon \mathbf{I}\mathbb{N}_{\infty} \to \mathscr{C}_{\mathbb{N}}, \ \gamma \mapsto \overrightarrow{\gamma}$ is a homomorphism. Then its restriction $\mathfrak{h}|_{\mathbf{I}\mathbb{N}^{g[j]}} \colon \mathbf{I}\mathbb{N}^{g[j]}_{\infty} \to \mathscr{C}_{\mathbb{N}}$ is homomorphism, too.

A homomorphic retraction of a semigroup S is a map from S into S which is both a retraction and a homomorphism. The image of the homomorphic retraction is called a homomorphic retract. These terms seem to have first appeared in [10].

Since $(\gamma)\mathfrak{h} = \overrightarrow{\gamma} = \gamma$ for any $\gamma \in \mathscr{C}_{\mathbb{N}}$ we get the following proposition.

Proposition 2.5. The map $\mathfrak{h}: \mathbf{IN}_{\infty}^{\mathbf{g}[j]} \to \mathscr{C}_{\mathbb{N}}, \gamma \mapsto \overrightarrow{\gamma}$ is a homomorphic retraction, and hence the monoid $\mathscr{C}_{\mathbb{N}}$ is a homomorphic retract of $\mathbf{IN}_{\infty}^{\mathbf{g}[j]}$.

For any subset $M \subseteq \{2, \ldots, j\}$ we denote $\mathbf{I}\mathbb{N}^{\mathbf{g}[j]}_{\infty}[M] = \left\{\gamma \in \mathbf{I}\mathbb{N}^{\mathbf{g}[j]}_{\infty}: n^{\mathbf{d}}_{\gamma} - x \in M \cup \{0\} \text{ for all } x \in \operatorname{dom} \gamma \text{ such that } x \leqslant n^{\mathbf{d}}_{\gamma} \right\}.$

For arbitrary $M_1, M_2 \subseteq \{2, \ldots, j\}$ it is obvious that $\mathbf{I}\mathbb{N}_{\infty}^{\mathbf{g}[j]}[M_1] \subseteq \mathbf{I}\mathbb{N}_{\infty}^{\mathbf{g}[j]}[M_2]$ if and only if $M_1 \subseteq M_2$, and moreover we have that $\mathbf{I}\mathbb{N}_{\infty}^{\mathbf{g}[j]}[M] = \mathscr{C}_{\mathbb{N}}$ when $M = \emptyset$ and $\mathbf{I}\mathbb{N}_{\infty}^{\mathbf{g}[j]}[M] = \mathbf{I}\mathbb{N}_{\infty}^{\mathbf{g}[j]}$ when $M = \{2, \ldots, j\}$.

Remark 2.6. By Lemma 1 of [22] we get that

 $\mathbf{I}\mathbb{N}_{\infty}^{\boldsymbol{g}[j]}[M] = \left\{ \gamma \in \mathbf{I}\mathbb{N}_{\infty}^{\boldsymbol{g}[j]} : n_{\gamma}^{\mathbf{r}} - x \in M \cup \{0\} \text{ for all } x \in \operatorname{ran} \gamma \text{ such that } x \leqslant n_{\gamma}^{\mathbf{r}} \right\}.$

Proposition 2.7. $\mathbb{IN}_{\infty}^{g[j]}[M]$ is an inverse semigroup of $\mathbb{IN}_{\infty}^{g[j]}$ for any $M \subseteq \{2, \ldots, j\}$.

Proof. Fix any $\gamma, \delta \in \mathbf{IN}_{\infty}^{\mathbf{g}[j]}[M]$. We consider the following cases.

- (1) If $n_{\gamma}^{\mathbf{r}} \leq n_{\delta}^{\mathbf{d}}$ then $n_{\gamma\delta}^{\mathbf{r}} = n_{\delta}^{\mathbf{r}}$ and $\operatorname{ran}(\gamma\delta) \subseteq \operatorname{ran}\delta$, because by Lemma 1 from [22] all elements of \mathbb{IN}_{∞} are partial shifts of the set \mathbb{N} . This and Remark 2.6 imply that $\gamma\delta \in \mathbb{IN}_{\infty}^{\mathbf{g}[j]}[M]$.
- (2) If $n_{\gamma}^{\mathbf{r}} > n_{\delta}^{\mathbf{d}}$ then by similar arguments as in the previous case we get that $n_{\gamma\delta}^{\mathbf{d}} = n_{\gamma}^{\mathbf{d}}$ and dom $(\gamma\delta) \subseteq \operatorname{dom} \delta$. This implies that $\gamma\delta \in \mathbf{IN}_{\infty}^{\boldsymbol{g}[j]}[M]$.

Remark 2.6 implies that if $\gamma \in \mathbf{IN}_{\infty}^{\boldsymbol{g}[j]}[M]$ then so is γ^{-1} .

3. On a topologization and a closure of the monoid $\mathrm{IN}_{\infty}^{g[j]}$

Later in the paper by \mathbb{I} we denote the identity map of \mathbb{N} , and assume that α and β are the elements of the submonoid $\mathscr{C}_{\mathbb{N}}$ in $\mathbb{I}\mathbb{N}_{\infty}$ which are defined in Remark 1.1.

It is obvious that $\alpha\beta = \mathbb{I}$ and $\beta\alpha$ is the identity map of $\mathbb{N} \setminus \{1\}$. This implies the following lemma.

Lemma 3.1. If $\gamma \in \mathbf{IN}_{\infty}$, then

- (i) $\beta \alpha \cdot \gamma = \gamma$ if and only if dom $\gamma \subseteq \mathbb{N} \setminus \{1\}$;
- (*ii*) $\gamma \cdot \beta \alpha = \gamma$ *if and only if* ran $\gamma \subseteq \mathbb{N} \setminus \{1\}$.

For any positive integer i let $\varepsilon^{[i]}$ be the identity map of the set $\mathbb{N} \setminus \{i\}$.

The following theorem generalized the results on the topologizabily of the bicyclic monoid obtained in [13] and [6].

Theorem 3.2. For any positive integer j every Hausdorff shift-continuous topology τ on $\mathbb{IN}_{\infty}^{g[j]}$ is discrete.

Proof. Since τ is Hausdorff, every retract of $(\mathbf{I}\mathbb{N}^{\boldsymbol{g}[j]}_{\infty}, \tau)$ is its closed subset. It is obvious that $\beta \alpha \cdot \mathbf{I}\mathbb{N}^{\boldsymbol{g}[j]}_{\infty}$ and $\mathbf{I}\mathbb{N}^{\boldsymbol{g}[j]}_{\infty} \cdot \beta \alpha$ are retracts of the topological space $(\mathbf{I}\mathbb{N}^{\boldsymbol{g}[j]}_{\infty}, \tau)$, because $\beta \alpha$ is an idempotent of $\mathbf{I}\mathbb{N}^{\boldsymbol{g}[j]}_{\infty}$. Later we shall show that the set $\mathbf{I}\mathbb{N}^{\boldsymbol{g}[j]}_{\infty} \setminus (\beta \alpha \cdot \mathbf{I}\mathbb{N}^{\boldsymbol{g}[j]}_{\infty} \cup \mathbf{I}\mathbb{N}^{\boldsymbol{g}[j]}_{\infty} \cdot \beta \alpha)$ is finite.

By Lemma 3.1, $\gamma \in \mathbb{IN}_{\infty}^{g[j]} \setminus (\beta \alpha \cdot \mathbb{IN}_{\infty}^{g[j]} \cup \mathbb{IN}_{\infty}^{g[j]} \cdot \beta \alpha)$ if and only if $1 \in \text{dom } \gamma$, $1 \in \text{ran } \gamma$, and $n_{\gamma}^{\mathbf{d}} - \underline{n}_{\gamma}^{\mathbf{d}} \leq j$. Then by Lemma 1 of [22], γ is a partial shift of the set of integers, and hence γ is an idempotent of $\mathbb{IN}_{\infty}^{g[j]}$ such that $1 \in \text{dom } \gamma$ and $\varepsilon^{[2]} \cdot \ldots \cdot \varepsilon^{[j-1]} \preccurlyeq \gamma$. It is obvious that such idempotents γ are finitely many in $\mathbb{IN}_{\infty}^{g[j]}$, and hence the set $\mathbb{IN}_{\infty}^{g[j]} \setminus (\beta \alpha \cdot \mathbb{IN}_{\infty}^{g[j]} \cup \mathbb{IN}_{\infty}^{g[j]} \cdot \beta \alpha)$ is finite. This implies that the point \mathbb{I} has a finite open neighbourhood and hence \mathbb{I} is an isolated point of the topological space $(\mathbb{IN}_{\infty}^{g[j]}, \tau)$.

We observe that \mathbb{IN}_{∞} , and hence $\mathbb{IN}_{\infty}^{g[j]}$, is a submonoid of the semigroup $\mathscr{I}_{\infty}^{\nearrow}(\mathbb{N})$ of cofinite monotone partial bijections of \mathbb{N} [22]. By Proposition 2.2 of [18] every right translation and every left translation by an element of the semigroup $\mathscr{I}_{\infty}^{\nearrow}(\mathbb{N})$ is a finite-to-one map, and hence such conditions hold for the semigroup $\mathbb{IN}_{\infty}^{g[j]}$. Also by Theorem 5 of [23], $\mathbb{IN}_{\infty}^{g[j]}$ is a simple semigroup. This implies that for any $\chi \in \mathbb{IN}_{\infty}^{g[j]}$ there exist $\alpha, \beta \in \mathbb{IN}_{\infty}^{g[j]}$ such that $\alpha \chi \beta = \mathbb{I}$, and moreover the equality $\alpha \chi \beta = \mathbb{I}$ has finitely many solutions. Since \mathbb{I} is an isolated point of $(\mathbb{IN}_{\infty}^{g[j]}, \tau)$, the separate continuity of the semigroup operation in $(\mathbb{IN}_{\infty}^{g[j]}, \tau)$ and the above arguments imply that $(\mathbb{IN}_{\infty}^{g[j]}, \tau)$ is the discrete space.

The following proposition generalized results obtained for the bicyclic monoid in [13] and [16].

Proposition 3.3. Let j be any positive integer and $\mathbb{IN}_{\infty}^{g[j]}$ be a proper dense subsemigroup of a Hausdorff semitopological semigroup S. Then $I = S \setminus \mathbb{IN}_{\infty}^{g[j]}$ is a closed ideal of S.

Proof. By Theorem 3.2, $\mathbb{IN}_{\infty}^{g[j]}$ is a discrete subspace of S, and hence by Lemma 3 of [21], $\mathbb{IN}_{\infty}^{g[j]}$ is an open subspace of S.

Fix an arbitrary element $y \in I$. If $xy = z \notin I$ for some $x \in \mathbb{IN}_{\infty}^{g[j]}$ then there exists an open neighbourhood U(y) of the point y in the space S such that $\{x\} \cdot U(y) = \{z\} \subset \mathbb{IN}_{\infty}^{g[j]}$. The neighbourhood U(y) contains infinitely many elements of the semigroup $\mathbb{IN}_{\infty}^{g[j]}$. This contradicts Proposition 2.2 of [18], which states that for each $v, w \in \mathbb{IN}_{\infty}^{g[j]}$ both sets $\{u \in \mathbb{IN}_{\infty}^{g[j]} : vu = w\}$ and $\{u \in \mathbb{IN}_{\infty}^{g[j]} : uv = w\}$ are finite. The obtained contradiction implies that $xy \in I$ for all $x \in \mathbb{IN}_{\infty}^{g[j]}$ and $y \in I$. The proof of the statement that $yx \in I$ for all $x \in \mathbb{IN}_{\infty}^{g[j]}$ and $y \in I$ is similar.

Suppose to the contrary that $xy = w \notin I$ for some $x, y \in I$. Then $w \in \mathbb{IN}_{\infty}^{g[j]}$ and the separate continuity of the semigroup operation in S implies that there exist open neighbourhoods U(x) and U(y) of the points x and y in S, respectively, such that $\{x\} \cdot U(y) = \{w\}$ and $U(x) \cdot \{y\} = \{w\}$. Since both neighbourhoods U(x) and U(y) contain infinitely many elements of the semigroup $\mathbb{IN}_{\infty}^{g[j]}$, both equalities $\{x\} \cdot U(y) = \{w\}$ and $U(x) \cdot \{y\} = \{w\}$ contradict mentioned above Proposition 2.2 from [18]. The obtained contradiction implies that $xy \in I$.

Lemma 3.4. Let j be any positive integer ≥ 2 . Then the element $\varepsilon \cdot (\beta \varepsilon)^j \cdot \alpha^j$ is an idempotent of the submonoid $\mathscr{C}_{\mathbb{N}}$ for any idempotent ε of the monoid $\mathbf{IN}_{\infty}^{\mathbf{g}[j]}$.

Proof. Since $\mathbb{I} = \alpha \beta$, we have that

$$\varepsilon \cdot \beta \varepsilon \alpha \cdot \beta^2 \varepsilon \alpha^2 \cdot \ldots \cdot \beta^j \varepsilon \alpha^j = \varepsilon \cdot (\mathbb{I}\beta \varepsilon)^j \cdot \alpha^j = \varepsilon \cdot (\beta \varepsilon)^j \cdot \alpha^j$$

and

$$\beta^k \varepsilon \alpha^k \cdot \beta^k \varepsilon \alpha^k = \beta^k \varepsilon \mathbb{I} \varepsilon \alpha^k = \beta^k \varepsilon \varepsilon \alpha^k = \beta^k \varepsilon \alpha^k,$$

for any positive integer k. Also, $\varepsilon(\beta\varepsilon)^j \alpha^j$ is an idempotent of $\mathbb{IN}_{\infty}^{g[j]}$, because $\mathbb{IN}_{\infty}^{g[j]}$ is an inverse semigroup and the product of idempotents in an inverse semigroup is an idempotent as well.

By definitions of the partial transformations α and β and the above part of the proof we get that

(3.1)
$$n_{\beta^k \varepsilon \alpha^k}^{\mathbf{d}} = n_{\varepsilon}^{\mathbf{d}} + k \quad \text{and} \quad \underline{n}_{\beta^k \varepsilon \alpha^k}^{\mathbf{d}} = \underline{n}_{\varepsilon}^{\mathbf{d}} + k,$$

and hence

(3.2)
$$n^{\mathbf{d}}_{\beta^k \varepsilon \alpha^k} - \underline{n}^{\mathbf{d}}_{\beta^k \varepsilon \alpha^k} = n^{\mathbf{d}}_{\varepsilon} - \underline{n}^{\mathbf{d}}_{\varepsilon}$$

for any positive integer k. Then equalities (3.1) and (3.2) imply that for any k = 1, ..., j the idempotent

$$\varepsilon_k = \varepsilon (\beta \varepsilon)^k \alpha^k$$

has the following properties:

$$n_{\varepsilon_k}^{\mathbf{d}} = n_{\beta^k \varepsilon \alpha^k}^{\mathbf{d}}, \quad \underline{n}_{\varepsilon_k}^{\mathbf{d}} = \underline{n}_{\beta^k \varepsilon \alpha^k}^{\mathbf{d}},$$

and

$$1,\ldots,\underline{n}_{\varepsilon}^{\mathbf{d}},\ldots,\underline{n}_{\varepsilon}^{\mathbf{d}}+k-1,n_{\varepsilon}^{\mathbf{d}}-1,n_{\varepsilon}^{\mathbf{d}},\ldots,n_{\varepsilon}^{\mathbf{d}}+k-1\notin\operatorname{dom}\varepsilon_{k}.$$

Hence we get that ε_j is the identity map of $[n_{\varepsilon}^{\mathbf{d}} + j)$, which implies the statement of the lemma.

Lemma 3.5. Let j be any positive integer and $\mathbb{IN}_{\infty}^{g[j]}$ be a proper dense subsemigroup of a Hausdorff topological inverse semigroup S. Then there exists an idempotent $e \in S \setminus \mathbb{IN}_{\infty}^{g[j]}$ such that $V(e) \cap E(\mathscr{C}_{\mathbb{N}})$ is an infinite subset for any open neighbourhood V(e) of e in S.

Proof. By Proposition 3.3, $S \setminus \mathbb{IN}_{\infty}^{g[j]}$ is an ideal of S. Since S is an inverse semigroup, $S \setminus \mathbb{IN}_{\infty}^{g[j]}$ contains an idempotent.

Put f be an arbitrary idempotent of $S \setminus \mathbb{IN}_{\infty}^{g[j]}$. Since the unit element of a Hausdorff topological monoid is again the unit element of its closure in a topological semigroup, for an arbitrary positive integer k by Proposition 3.3 we have that

$$\beta^k f \alpha^k \cdot \beta^k f \alpha^k = \beta^k f \mathbb{I} f \alpha^k = \beta^k f f \alpha^k = \beta^k f \alpha^k,$$

and hence $\beta^k f \alpha^k \in E(S) \setminus E(\mathbb{IN}_{\infty}^{g[j]})$. This implies that $e = f \cdot \beta f \alpha \cdot \ldots \cdot \beta^j f \alpha^j$ is an idempotent in S because S is an inverse semigroup. The continuity of the semigroup operation in S implies that for every open neighbourhood V(e) of the point e in S there exists an open neighbourhood W(f) of the point f in S such that

$$W(f) \cdot \beta \cdot W(f) \alpha \cdot \ldots \cdot \beta^j \cdot W(f) \cdot \alpha^j \subseteq V(e).$$

By Proposition II.3 of [13] the set $W(f) \cap E(\mathbb{IN}_{\infty}^{g[j]})$ is infinite. Since for any positive integer n_0 there exist finitely many idempotents $\varepsilon \in \mathbb{IN}_{\infty}^{g[j]}$ such that $n_{\varepsilon}^{\mathbf{d}} = n_0$, we conclude that the set $\{n_{\varepsilon}^{\mathbf{d}} : \varepsilon \in W(f) \cap E(\mathbb{IN}_{\infty}^{g[j]})\}$ is infinite, too. Then there exists an infinite sequence $\{\varphi_i\}_{i\in\mathbb{N}}$ of idempotents of $W(f) \cap E(\mathbb{IN}_{\infty}^{g[j]})$ such that $n_{\varphi_{i_1}}^{\mathbf{d}} \neq n_{\varphi_{i_2}}^{\mathbf{d}}$ for any distinct positive integers i_1 and i_2 . Lemma 3.5 implies that $\varphi_i \cdot (\beta \varphi_i)^j \cdot \alpha^j$ is an idempotent of the submonoid $\mathscr{C}_{\mathbb{N}}$ which belongs to V(e) for any positive integer i. Since the set $\{n_{\varepsilon}^{\mathbf{d}} : \varepsilon \in W(f) \cap E(\mathbb{IN}_{\infty}^{g[j]})\}$ is infinite, the set $V(e) \cap E(\mathscr{C}_{\mathbb{N}})$ is infinite, too.

Theorem 3.6. Let j be any positive integer and $\mathbb{IN}_{\infty}^{g[j]}$ be a proper dense subsemigroup of a Hausdorff topological inverse semigroup S. Then $I = S \setminus \mathbb{IN}_{\infty}^{g[j]}$ is a topological group.

Proof. We claim that the ideal I contains a unique idempotent.

Suppose to the contrary that I has at least two distinct idempotent e and f. By Lemma 3.5 without loss of generality we may assume that the set $V(e) \cap E(\mathscr{C}_{\mathbb{N}})$ is infinite for any open neighbourhood V(e) of e in S. Since S is an inverse semigroup ef = fe = h for some $h \in I \cap E(S)$. Fix an arbitrary open neighbourhood U(h) in S. Then there exist disjoint open neighbourhoods W(e) and W(f) of the points e and f in S, respectively, such that $W(e) \cdot W(f) \subseteq U(h)$. Since S is Hausdorff, we can additionally assume that $W(e) \cap U(h) = \emptyset$ if $e \neq h$ and $W(f) \cap U(h) = \emptyset$ if $f \neq h$. Since $e \neq f$ we conclude that $W(e) \cap U(h) = \emptyset$ or $W(f) \cap U(h) = \emptyset$. Since the set $W(f) \cap E(\mathbb{IN}_{\infty}^{g[j]})$ is infinite and for any positive integer n_0 there exist finitely many idempotents $\iota \in \mathbb{IN}_{\infty}^{g[j]}$ such that $n_{\iota}^{\mathbf{d}} = n_0$, we conclude that the set $\{\underline{n}_{\iota}^{\mathbf{d}} : \iota \in W(f) \cap E(\mathbb{IN}_{\infty}^{g[j]})\}$ is infinite as well. Also, the choice of the neighbourhood W(e) implies that the set $\{\underline{n}_{\iota}^{\mathbf{d}} = n_{\iota}^{\mathbf{d}} : \iota \in W(e) \cap E(\mathscr{C}_{\mathbb{N}})\}$ is infinite, too. Then the semigroup operation in $\mathbb{IN}_{\infty}^{g[j]}$ implies that there exist idempotents $\iota_e \in W(e)$ and $\iota_f \in W(f)$ such that $\iota_e \in \iota_e \cdot W(f)$ and $\iota_f \in \iota_f \cdot W(e)$, which implies $W(e) \cap U(h) \neq \emptyset \neq W(f) \cap U(h)$. But this contradicts the choice of the neighbourhoods W(e), W(f), U(h).

Since S is an inverse semigroup, we have that $xx^{-1} = x^{-1}x = e$ for any $x \in I$. This implies that I is a subgroup of S with the unit element e. Also, the continuity of semigroup operation and the inversion in S implies that I is a topological group with the induced topology from S.

Lemma 3.7 follows from the definition of an element $\overrightarrow{\gamma}$ for an arbitrary $\gamma \in \mathscr{I}_{\infty}^{\mathbb{P}^{\times}}(\mathbb{N})$.

Lemma 3.7. For any $\gamma \in \mathscr{I}_{\infty}^{\not \triangleright^{\gamma}}(\mathbb{N})$ the following statements hold:

 $\begin{array}{ccc} (i) & \overrightarrow{\gamma} \in \mathscr{C}_{\mathbb{N}}; \\ (ii) & \overrightarrow{\gamma}^{-1} = \overrightarrow{\gamma^{-1}}; \\ (iii) & \gamma \overrightarrow{\gamma}^{-1} = \overrightarrow{\gamma} \overrightarrow{\gamma}^{-1}; \\ (iv) & \overrightarrow{\gamma}^{-1} \gamma = \overrightarrow{\gamma}^{-1} \overrightarrow{\gamma}. \end{array}$

Proposition 3.8. Let j be any positive integer and $\mathbb{IN}_{\infty}^{g[j]}$ be a proper dense subsemigroup of a Hausdorff topological inverse semigroup S. Then the unique idempotent of $S \setminus \mathbb{IN}_{\infty}^{g[j]}$ commutes with all elements of the semigroup $\mathbb{IN}_{\infty}^{g[j]}$.

Proof. By Theorem 3.6, $S \setminus I\mathbb{N}_{\infty}^{g[j]}$ is a group. Put e_0 be the unique idempotent of $S \setminus I\mathbb{N}_{\infty}^{g[j]}$. Also, by Lemma 3.5 the set $U(e_0) \cap E(\mathscr{C}_{\mathbb{N}})$ is infinite for any open neighbourhood $U(e_0)$ of the point e_0 in S. This implies that $e_0 \in cl_S(\mathscr{C}_{\mathbb{N}})$. Then by Proposition III.2 of [13], $e_0 \cdot \gamma = \gamma \cdot e_0$ for any $\gamma \in \mathscr{C}_{\mathbb{N}}$.

Fix an arbitrary $\gamma \in \mathbf{IN}_{\infty}^{\mathbf{g}[j]}$. By Lemma 3.7 we have that

$$\overrightarrow{\gamma} \cdot \overrightarrow{\gamma}^{-1} \cdot \gamma = \gamma \cdot \overrightarrow{\gamma}^{-1} \cdot \overrightarrow{\gamma} = \overrightarrow{\gamma} \in \mathscr{C}_{\mathbb{N}}.$$

Since S is an inverse semigroup and $S \setminus \mathbb{IN}_{\infty}^{g[j]}$ is an ideal of S, Lemma 3.7 implies that

$$e_{0} \cdot \gamma = (e_{0} \cdot \overrightarrow{\gamma} \cdot \overrightarrow{\gamma}^{-1}) \cdot \gamma = e_{0} \cdot (\overrightarrow{\gamma} \cdot \overrightarrow{\gamma}^{-1} \cdot \gamma) =$$
$$= e_{0} \cdot \overrightarrow{\gamma} = \overrightarrow{\gamma} \cdot e_{0} = (\gamma \cdot \overrightarrow{\gamma}^{-1} \cdot \overrightarrow{\gamma}) \cdot e_{0} =$$
$$= \gamma \cdot (\overrightarrow{\gamma}^{-1} \cdot \overrightarrow{\gamma} \cdot e_{0}) = \gamma \cdot e_{0}.$$

This completes the proof of the proposition.

Corollary 3.9. Let *j* be any positive integer and $\mathbb{IN}_{\infty}^{g[j]}$ be a proper dense subsemigroup of a Hausdorff topological inverse semigroup *S*. Then the group $S \setminus \mathbb{IN}_{\infty}^{g[j]}$ contains a dense cyclic subgroup.

Proof. By Proposition 3.8, the unique idempotent e_0 of $S \setminus I\mathbb{N}_{\infty}^{g[j]}$ commutes with all elements of the semigroup $I\mathbb{N}_{\infty}^{g[j]}$ and hence the map $\mathfrak{h} \colon S \to S \setminus I\mathbb{N}_{\infty}^{g[j]}$, $(\gamma)\mathfrak{h} = e_0 \cdot \gamma$ is a homomorphisms. Since $S \setminus I\mathbb{N}_{\infty}^{g[j]}$ is a subgroup of S, by Corollary 1.32 of [12] the image $(I\mathbb{N}_{\infty}^{g[j]})\mathfrak{h}$ is a cyclic group. Also, since $I\mathbb{N}_{\infty}^{g[j]}$ is a dense subset of a topological semigroup S, Proposition 1.4.1 of [14] implies that the image $(I\mathbb{N}_{\infty}^{g[j]})\mathfrak{h}$ is a dense subset of $S \setminus I\mathbb{N}_{\infty}^{g[j]}$.

4. On a closure of the monoid $\mathbb{IN}_{\infty}^{g[j]}$ in a locally compact topological inverse semigroup

In [13] Eberhart and Selden described the closure of the bicyclic monoid in a locally compact topological inverse semigroup. We give this description in the terms of the monoid $\mathscr{C}_{\mathbb{N}}$.

Example 4.1. The definition of the bicyclic monoid, its algebraic properties (see [12, Section 1.12]) and Remark 1.1 imply that the following relation

 $\gamma \sim \delta$ if and only if $n_{\gamma}^{\mathbf{r}} - n_{\gamma}^{\mathbf{d}} = n_{\delta}^{\mathbf{r}} - n_{\delta}^{\mathbf{d}}, \qquad \gamma, \delta \in \mathscr{C}_{\mathbb{N}},$

coincides with the minimum group congruence $\mathfrak{C}_{\mathbf{mg}}$ on $\mathscr{C}_{\mathbb{N}}$. Moreover, the quotient semigroup $\mathscr{C}_{\mathbb{N}}/\mathfrak{C}_{\mathbf{mg}}$ is isomorphic to the additive group of integers $\mathbb{Z}(+)$ by the map

$$\tau_{\mathfrak{C}_{\mathbf{mg}}} \colon \mathscr{C}_{\mathbb{N}} \to \mathbb{Z}(+), \quad \gamma \mapsto n_{\delta}^{\mathbf{r}} - n_{\delta}^{\mathbf{d}}.$$

The minimum group congruence $\mathfrak{C}_{\mathbf{mg}}$ on $\mathscr{C}_{\mathbb{N}}$ defines the natural partial order \preccurlyeq on the monoid $\mathscr{C}_{\mathbb{N}}$ in the following way:

$$\gamma \preccurlyeq \delta \quad \text{if and only if} \quad n_{\gamma}^{\mathbf{r}} - n_{\gamma}^{\mathbf{d}} = n_{\delta}^{\mathbf{r}} - n_{\delta}^{\mathbf{d}} \quad \text{and} \quad n_{\gamma}^{\mathbf{d}} \geqslant n_{\delta}^{\mathbf{d}}, \qquad \gamma, \delta \in \mathscr{C}_{\mathbb{N}}.$$

We put $\mathcal{CC}_{\mathbb{N}} = \mathcal{C}_{\mathbb{N}} \sqcup \mathbb{Z}(+)$ and extend the multiplications from the semigroup $\mathcal{C}_{\mathbb{N}}$ and the group $\mathbb{Z}(+)$ onto $\mathcal{CC}_{\mathbb{N}}$ in the following way:

$$k \cdot \gamma = \gamma \cdot k = k + (\gamma) \pi_{\mathfrak{C}_{\mathbf{mg}}} \in \mathbb{Z}(+), \quad \text{for all} \quad k \in \mathbb{Z}(+) \quad \text{and} \quad \gamma \in \mathscr{C}_{\mathbb{N}}.$$

Then so defined binary operation is a semigroup operation on $\mathcal{CC}_{\mathbb{N}}$ such that $\mathbb{Z}(+)$ is an ideal in $\mathcal{CC}_{\mathbb{N}}$. Also, this semigroup operation extends the natural partial order \preccurlyeq from $\mathcal{C}_{\mathbb{N}}$ onto $\mathcal{CC}_{\mathbb{N}}$ in the following way:

- (i) all distinct elements of $\mathbb{Z}(+)$ are pair-wise incomparable;
- (ii) $k \preccurlyeq \gamma$ if and only if $n_{\gamma}^{\mathbf{r}} n_{\gamma}^{\mathbf{d}} = k$ for $k \in \mathbb{Z}(+)$ and $\gamma \in \mathscr{C}_{\mathbb{N}}$.

For any $x \in \mathcal{CC}_{\mathbb{N}}$ we denote $\uparrow_{\preccurlyeq} x = \{ y \in \mathcal{CC}_{\mathbb{N}} \colon x \preccurlyeq y \}.$

We define the topology τ_{lc} on $\mathcal{CC}_{\mathbb{N}}$ in the following way:

(i) all elements of the monoid $\mathscr{C}_{\mathbb{N}}$ are isolated points in $(\mathscr{C}\mathscr{C}_{\mathbb{N}}, \tau_{\mathsf{lc}})$;

(*ii*) for any
$$k \in \mathbb{Z}(+)$$
 the family $\mathscr{B}_{\mathsf{lc}}(k) = \{U_i(k) : i \in \mathbb{N}\}$, where
 $U_i(k) = \{k\} \cup \{\gamma \in \mathscr{C}_{\mathbb{N}} : k \preccurlyeq \gamma \text{ and } n_{\gamma}^{\mathbf{d}} \ge i\},$

is the base of the topology τ_{lc} at the point $k \in \mathbb{Z}(+)$.

In [13] Eberhart and Selden proved that τ_{lc} is the unique Hausdorff locally compact semigroup inverse topology on $\mathcal{CC}_{\mathbb{N}}$. Moreover, they shown that if $\mathcal{C}_{\mathbb{N}}$ is a proper dense subsemigroup of a Hausdorff locally compact topological inverse semigroup S, then S is topologically isomorphic to $(\mathcal{CC}_{\mathbb{N}}, \tau_{\mathsf{lc}})$.

Example 4.2. Let $\mathcal{CIN}_{\infty}^{\boldsymbol{g}[j]}$ be a semigroup defined in Example 2.4. Put M be an arbitrary subset of $\{2, \ldots, j\}$.

We define the topology τ_{lc}^{M} on $\mathcal{C}\mathbf{I}\mathbb{N}_{\infty}^{g[j]}$ in the following way:

- (*i*) all elements of the monoid $\mathbb{IN}^{g[j]}_{\infty}$ are isolated points in $(\mathcal{CIN}^{g[j]}_{\infty}, \tau^{M}_{\mathsf{lc}})$; (*ii*) for any $k \in \mathbb{Z}(+)$ the family $\mathscr{B}^{M}_{\mathsf{lc}}(k) = \{U^{M}_{i}(k) : i \in \mathbb{N}\}$, where

$$U_i^M(k) = \{k\} \cup \big\{ \gamma \in \mathcal{C}\mathbf{IN}_{\infty}^{\boldsymbol{g}[j]}[M] \colon k \preccurlyeq \gamma \text{ and } n_{\gamma}^{\mathbf{d}} \ge i \big\},\$$

is the base of the topology τ_{lc}^{M} at the point $k \in \mathbb{Z}(+)$.

Remark 4.3.

- 1. We observe that a simple verifications show that the following conditions hold:
 - (i) if k = 0 then $U_i^M(k) = U_i^M(0) = \{0\} \cup \{\gamma \in \mathcal{C}\mathbf{IN}_{\infty}^{\boldsymbol{g}[j]}[M] \colon k \preccurlyeq \gamma \text{ and } \gamma \notin \uparrow_{\preccurlyeq} \beta^{i-2} \alpha^{i-2} \};$
 - $(ii) \text{ if } k > 0 \text{ then } U_i^M(k) = \{0\} \cup \{\gamma \in \mathcal{C}\mathbf{IN}_{\infty}^{\boldsymbol{g}[j]}[M] \colon k \preccurlyeq \gamma \text{ and } \gamma \notin \mathcal{C}\mathbf{IN}_{\infty}^{\boldsymbol{g}[j]}[M] \colon k \preccurlyeq \gamma \text{ and } \gamma \notin \mathcal{C}\mathbf{IN}_{\infty}^{\boldsymbol{g}[j]}[M] \colon k \preccurlyeq \gamma \text{ and } \gamma \notin \mathcal{C}\mathbf{IN}_{\infty}^{\boldsymbol{g}[j]}[M] \colon k \preccurlyeq \gamma \text{ and } \gamma \notin \mathcal{C}\mathbf{IN}_{\infty}^{\boldsymbol{g}[j]}[M] \colon k \preccurlyeq \gamma \text{ and } \gamma \notin \mathcal{C}\mathbf{IN}_{\infty}^{\boldsymbol{g}[j]}[M] \colon k \preccurlyeq \gamma \text{ and } \gamma \notin \mathcal{C}\mathbf{IN}_{\infty}^{\boldsymbol{g}[j]}[M] \colon k \preccurlyeq \gamma \text{ and } \gamma \notin \mathcal{C}\mathbf{IN}_{\infty}^{\boldsymbol{g}[j]}[M] \colon k \preccurlyeq \gamma \text{ and } \gamma \notin \mathcal{C}\mathbf{IN}_{\infty}^{\boldsymbol{g}[j]}[M] \colon k \preccurlyeq \gamma \text{ and } \gamma \notin \mathcal{C}\mathbf{IN}_{\infty}^{\boldsymbol{g}[j]}[M]$ $\uparrow_{\preccurlyeq}\beta^{i-2}\alpha^{i-2+k}\};$
 - $\begin{array}{ll} (iii) \text{ if } k < 0 \text{ then } U_i^M(k) = \{0\} \cup \left\{\gamma \in \mathcal{C}\mathbf{I}\mathbb{N}^{\boldsymbol{g}[j]}_{\infty}[M] \colon k \preccurlyeq \gamma \text{ and } \gamma \notin \uparrow_{\preccurlyeq} \beta^{i-2-k} \alpha^{i-2} \right\}. \end{array}$
- 2. Since all elements of the monoid $\mathbf{IN}_{\infty}^{g[j]}$ are isolated points in $(\mathcal{CIN}_{\infty}^{g[j]}, \tau_{l_{c}}^{M})$ and all distinct elements of the subgroup $\mathbb{Z}(+)$ are incomporable with the respect to the natural partial order on $\mathcal{CIN}_{\infty}^{g[j]}$, Proposition 2.2 implies that τ_{lc}^{M} is a Hausdorff topology on $\mathcal{C}\mathbf{I}\mathbb{N}_{\infty}^{\boldsymbol{g}[j]}$. Also, since for any $\gamma \in \mathscr{C}_{\mathbb{N}}$ the set $\uparrow_{\preccurlyeq}\gamma$ is finite we get that $U_i^M(k)$ is compact for any $k \in Z(+)$ and any positive integer *i*. This implies that the space $(\mathcal{C}\mathbf{IN}_{\infty}^{g[j]}, \tau_{\mathsf{lc}}^{M})$ is locally comapct, and hence by Theorems 3.3.1, 4.2.9 and Corollary 3.3.6 from [14] it is metrizable.

Proposition 4.4. $(CIN_{\infty}^{g[j]}, \tau_{l_{c}}^{M})$ is a topological inverse semigroup.

Proof. Since all elements of the monoid $\mathbf{IN}_{\infty}^{g[j]}$ are isolated points in $(\mathcal{CIN}_{\infty}^{g[j]}, \tau_{\mathsf{lc}}^{M})$ and all distinct elements of the subgroup $\mathbb{Z}(+)$ commute with elements of $\mathbb{IN}_{\infty}^{g[j]}$ it is suffices to check the continuity of the semigroup operation at the pairs (γ, k_1) and (k_1, k_2) where $\gamma \in \mathbf{IN}_{\infty}^{\mathbf{g}[j]}$ and $k_1, k_2 \in \mathbb{Z}(+)$.

Fix any $\gamma \in \mathbb{IN}_{\infty}^{g[j]}$ and $k \in \mathbb{Z}(+)$. Then $\overrightarrow{\gamma} = \beta^p \alpha^r$ for some fixed non-negative integers p and r. Hence

$$\gamma \cdot k = (\gamma)\pi_{\mathfrak{C}_{\mathbf{mg}}} + k = (\overrightarrow{\gamma})\pi_{\mathfrak{C}_{\mathbf{mg}}} + k = r - p + k,$$

and for any positive integer $i > \max\{p, r\} + j$ we have that

$$\gamma \cdot U_i^M(k) \subseteq U_i^M(r-p+k).$$

Fix any $k_1, k_2 \in \mathbb{Z}(+)$. Then for any positive integer i > j by Proposition 1.4.7 of [27] and Proposition 2.7 we have that $U_i^M(k_1) \cdot U_i^M(k_2) \subseteq U_i^M(k_1 + k_2)$. The above arguments and the equality $(U_i^M(k))^{-1} = U_i^M(-k)$ complete the

proof of the proposition.

Lemma 4.5. Let j be any positive integer and $\mathbb{IN}_{\infty}^{g[j]}$ be a proper dense subsemigroup of a Hausdorff locally compact topological inverse semigroup S. Then $G = S \setminus I\mathbb{N}_{\infty}^{g[j]}$ is topologically isomorphic to the discrete additive group of integers $\mathbb{Z}(+).$

Proof. By Corollary 3.9, G is a subgroup of $\mathbb{IN}_{\infty}^{g[j]}$ which contains a dense cyclic subgroup. By Theorem 3.2, $\mathbb{IN}_{\infty}^{g[j]}$ is a discrete subspace of S, and hence by Theorem 3.3.9 of [14], G is a closed subspace of S. Then Theorem 3.3.8 of [14]and Theorem 3.6 imply that G with the induced topology from S is a locally compact topological group. By the Weil Theorem (see [31]) the topological group G is either compact or discrete. By Lemma 3.5 the remainder $cl_S(\mathscr{C}_{\mathbb{N}}) \setminus \mathscr{C}_{\mathbb{N}}$ of the subsemigroup $\mathscr{C}_{\mathbb{N}}$ in S is non-empty. Then by Theorem 3.3.8 of [14], $cl_{S}(\mathscr{C}_{\mathbb{N}})$ is a locally compact space. Theorem V.7 of [13] implies that $H = cl_S(\mathscr{C}_{\mathbb{N}}) \setminus \mathscr{C}_{\mathbb{N}}$ is a group, which is topologically isomorphic to the discrete additive group of integers $\mathbb{Z}(+)$. By Proposition 1.4.19 of [2], H is a closed discrete subgroup of G, and hence by Theorem 1.4.23 of [2] the topological group G is topologically isomorphic to the discrete additive group of integers $\mathbb{Z}(+)$.

A partial order \leq on a topological space X is called *closed* (or *continuous*) if the relation \leq is a closed subset of $X \times X$ in the product topology [15]. A topological space with a closed partial order is called a *pospace*.

Later we assume that $\mathbb{IN}_{\infty}^{\boldsymbol{g}[j]}$ is a proper dense subsemigroup of a Hausdorff locally compact topological inverse semigroup S and we identify the topological group G with the discrete additive group of integers $\mathbb{Z}(+)$.

We observe that equality $\uparrow_{\preccurlyeq} k = \{\gamma \in S : \gamma \cdot 0 = k\}$ implies that $\uparrow_{\preccurlyeq} k$ is an open-and-closed subset of S for any $k \in \mathbb{Z}(+)$. Since $\mathbb{IN}_{\ast}^{g[j]}$ is a discrete subspace of S the above arguments and Lemma 4.5 imply the following lemma:

Lemma 4.6. The natural partial order \preccurlyeq on S is closed, and moreover $\uparrow_{\preccurlyeq} x$ is open-and-closed subset of S for any $x \in S$.

Lemma 4.7. For any $k, l \in \mathbb{Z}(+)$ the subspace $\uparrow_{\preccurlyeq} k$ and $\uparrow_{\preccurlyeq} l$ of S are homeomorphic. Moreover, the map $P_{\alpha^k}: \uparrow_{\preccurlyeq} 0 \to \uparrow_{\preccurlyeq} k, \ x \mapsto x \cdot \alpha^k$ is a homeomorphism for k > 0, and the map $\Lambda_{\beta^k} : \uparrow_{\preccurlyeq} 0 \to \uparrow_{\preccurlyeq} k, x \mapsto \beta^k \cdot x$ is a homeomorphism for k < 0.

Proof. Proposition 1.4.7 from [27] implies that the maps P_{α^k} and Λ_{β^k} are well defined. It is obvious that complete to prove that the second part of the lemma holds. We shall show that the map P_{α^k} determines a homeomorphism from $\uparrow_{\preccurlyeq} 0$ onto $\uparrow_{\preccurlyeq} k$. In the case of the map Λ_{β^k} the proof is similar.

We define a map $P_{\beta^k} : \uparrow_{\preccurlyeq} k \to \uparrow_{\preccurlyeq} 0$ by the formula $(x)P_{\beta^k} = x \cdot \beta^k$. Then we have that $(0)P_{\alpha^k} = k$ and $(k)P_{\beta^k} = 0$. Moreover, we have that $(x)P_{\alpha^k}P_{\beta^k} = x$ for any $x \in \uparrow_{\preccurlyeq} 0$ and $(y) P_{\beta^k} P_{\alpha^k} = y$ for any $y \in \uparrow_{\preccurlyeq} k$. Therefore the compositions of maps $P_{\alpha^k}P_{\beta^k}: \uparrow_{\preccurlyeq} 0 \to \uparrow_{\preccurlyeq} 0$ and $P_{\beta^k}P_{\alpha^k}: \uparrow_{\preccurlyeq} k \to \uparrow_{\preccurlyeq} k$ are identity maps of the sets $\uparrow_{\preccurlyeq} 0$ and $\uparrow_{\preccurlyeq} k$, respectively. Hence the maps P_{α^k} and P_{β^k} are bijections, and hence P_{β^k} is inverse of P_{α^k} . Since right translations in the topological semigroup S are continuous, the maps $P_{\alpha^k}: \uparrow_{\preccurlyeq} 0 \to \uparrow_{\preccurlyeq} k$ and $P_{\beta^k}: \uparrow_{\preccurlyeq} k \to \uparrow_{\preccurlyeq} 0$ are homeomorphisms.

By Lemma 3.5 the remainder $\operatorname{cl}_S(\mathscr{C}_{\mathbb{N}}) \setminus \mathscr{C}_{\mathbb{N}}$ of the subsemigroup $\mathscr{C}_{\mathbb{N}}$ in S is non-empty. Also, Theorem V.7 of [13] implies that the remainder $\operatorname{cl}_S(\mathscr{C}_{\mathbb{N}}) \setminus \mathscr{C}_{\mathbb{N}}$ is a group, which is topologically isomorphic to the discrete additive group of integers $\mathbb{Z}(+)$. This and results of [13, Section V] (see Example 4.1) imply the following proposition:

Proposition 4.8. Let j be any positive integer and $\mathbb{IN}_{\infty}^{g[j]}$ be a proper dense subsemigroup of a Hausdorff locally compact topological inverse semigroup $(\mathcal{CIN}^{g[j]}_{\infty}, \tau)$. Then τ induces the topology τ_{lc} on the semigroup $\mathcal{CC}_{\mathbb{N}}$.

If $M = \emptyset$ then we denote the locally compact semigroup inverse topology $\tau_{\rm lc}^M$ on the monoid $\mathcal{C}\mathbf{I}\mathbb{N}_{\infty}^{g[j]}$ by $\tau_{\mathsf{lc}}^{\emptyset}$. Also in the case when $M = \{2, \ldots, j\}$ we denote the topology τ_{lc}^{M} on $\mathcal{C}\mathbf{I}\mathbb{N}_{\infty}^{\boldsymbol{g}[j]}$ by $\tau_{\mathsf{lc}}^{[2:j]}$. Proposition 4.8 implies the following:

Proposition 4.9. Let j be any positive integer and $\mathbb{IN}_{\infty}^{g[j]}$ be a proper dense subsemigroup of a Hausdorff locally compact topological inverse semigroup $(\mathcal{C}\mathbf{I}\mathbb{N}^{g[j]}_{\infty}, \tau)$. Then $\tau_{lc}^{\varnothing} \subseteq \tau \subseteq \tau_{lc}^{[2:j]}$.

Theorem 4.10. Let j be any positive integer and $\mathbb{IN}_{\infty}^{g[j]}$ be a proper dense subsemigroup of a Hausdorff locally compact topological inverse semigroup (S, τ) . Then (S,τ) topologically isomorphic to the topological inverse semigroup $(\mathcal{CIN}_{\infty}^{g[j]},\tau_{lc}^{M})$ for some subset M of $\{2, \ldots, j\}$.

Proof. Lemma 4.5 implies that the inverse semigroup S is isomorphic to the monoid $\mathcal{CIN}_{\infty}^{g[j]}$. Also, by the definition of the monoid $\mathbb{IN}_{\infty}^{g[j]}$, Lemma 4.7 and Proposition 4.9 we get that there exists a maximal subset M_1 of $\{2, \ldots, j\}$ such that the following condition holds:

(*) for every open neighbourhood V_0 of the point $0 \in \mathbb{Z}(+)$ in $(\mathcal{CIN}_{\infty}^{\boldsymbol{g}[j]}, \tau)$ there exists an open neighbourhood $U_i^{M_1}(0)$ of 0 in $(\mathcal{CIN}_{\infty}^{\boldsymbol{g}[j]}, \tau_{\mathsf{lc}}^{M_1})$ such that $U_i^{M_1}(0) \subseteq V_0$ and $V_0 \setminus U_i^{M_1}(0)$ is infinite.

Since the topology τ is locally compact and $\mathbb{IN}_{\infty}^{g[j]}$ is a discrete subsemigroup of $(\mathcal{CIN}_{\infty}^{g[j]}, \tau)$, without loss of generality we may assume that the open neighbourhood V_0 is compact.

The maximality of M_1 and condition (*) imply that there exists a subset $M_1^1 \subseteq \{2, \ldots, j\}$ such that $M_1 \subset M_1^1$, $|M_1^1 \setminus M_1| = 1$ and for every open neighbourhood V_0 of the point $0 \in \mathbb{Z}(+)$ in $(\mathcal{CIN}_{\infty}^{g[j]}, \tau)$ the following conditions hold:

(4.1)
$$\left| \left(V_0 \cap U_i^{M_1^1}(0) \right) \setminus U_i^{M_1}(0) \right| = \infty \text{ and } \left| U_i^{M_1^1}(0) \setminus \left(V_0 \cap U_i^{M_1^1}(0) \right) \right| = \infty.$$

By continuity of the semigroup operation in $(\mathcal{C}\mathbf{IN}_{\infty}^{g[j]}, \tau)$ there exists a compactand-open neighbourhood $U_0 \subseteq V_0$ of the point $0 \in \mathbb{Z}(+)$ in the space $(\mathcal{C}\mathbf{IN}_{\infty}^{g[j]}, \tau)$ such that $\beta \cdot U_0 \cdot \alpha \subseteq V_0$. Then the semigroup operation of $\mathcal{C}\mathbf{IN}_{\infty}^{g[j]}$, the above inclusion and conditions (4.1) imply that the set $V_0 \setminus U_0$ is infinite, which contradicts the compactness of V_0 . This and maximality of M_1 imply that the set $V_0 \setminus U_i^{M_1}(0)$ is finite for every open neighbourhood V_0 of the point $0 \in \mathbb{Z}(+)$ in $(\mathcal{C}\mathbf{IN}_{\infty}^{g[j]}, \tau)$ and any open neighbourhood $U_i^{M_1}(0)$ of 0 in $(\mathcal{C}\mathbf{IN}_{\infty}^{g[j]}, \tau_{\mathsf{lc}}^{M_1})$. Then the bases of τ and $\tau_{\mathsf{lc}}^{M_1}$ at the point $0 \in \mathbb{Z}(+)$ coincide, and hence by Lemma 4.7 we get that $\tau = \tau_{\mathsf{lc}}^{M_1}$.

Corollary 4.11. For any positive integer j there exists exactly 2^{j-1} pairwise topologically non-isomorphic Hausdorff locally compact semigroup inverse topologies on the monoid $CIN_{2}^{g[j]}$.

Acknowledgements

The authors acknowledge Alex Ravsky and the referee for useful important comments and suggestions.

References

- L. W. Anderson, R. P. Hunter, R. J. Koch, Some results on stability in semigroups. Trans. Amer. Math. Soc. 117 (1965), 521–529.
- [2] A. Arhangel'skii, M. Tkachenko, Topological Groups and Related Structures, Atlantis, 2008.
- [3] T. Banakh, S. Dimitrova, O. Gutik, The Rees-Suschkiewitsch Theorem for simple topological semigroups, Mat. Stud. 31 (2009), no. 2, 211–218.
- [4] T. Banakh, S. Dimitrova, O. Gutik, Embedding the bicyclic semigroup into countably compact topological semigroups, Topology Appl. 157 (2010), no. 18, 2803–2814.
- [5] S. Bardyla, A. Ravsky, Closed subsets of compact-like topological spaces, Appl. Gen. Topol. 21 (2020), no. 2, 201–214.
- M. O. Bertman, T. T. West, Conditionally compact bicyclic semitopological semigroups, Proc. Roy. Irish Acad. A76 (1976), no. 21–23, 219–226.

- [7] O. Bezushchak, On growth of the inverse semigroup of partially defined co-finite automorphisms of integers, Algebra Discrete Math. (2004), no. 2, 45–55.
- [8] O. Bezushchak, Green's relations of the inverse semigroup of partially defined cofinite isometries of discrete line, Visn., Ser. Fiz.-Mat. Nauky, Kyiv. Univ. Im. Tarasa Shevchenka (2008), no. 1, 12–16.
- [9] J. H. Carruth, J. A. Hildebrant, R. J. Koch, *The Theory of Topological Semigroups*, Vol. I, Marcel Dekker, Inc., New York and Basel, 1983; Vol. II, Marcel Dekker, Inc., New York and Basel, 1986.
- [10] D. R. Brown, Topological semilattices on the two-cell, Pacific J. Math. 15 (1965), no. 1, 35–46.
- [11] I. Ya. Chuchman, O. V. Gutik, Topological monoids of almost monotone injective co-finite partial selfmaps of the set of positive integers. Carpathian Math. Publ. 2 (2010), no. 1, 119–132.
- [12] A. H. Clifford, G. B. Preston, *The Algebraic Theory of Semigroups*, Vol. I., Amer. Math. Soc. Surveys 7, Providence, R.I., 1961; Vol. II., Amer. Math. Soc. Surveys 7, Providence, R.I., 1967.
- [13] C. Eberhart, J. Selden, On the closure of the bicyclic semigroup, Trans. Amer. Math. Soc. 144 (1969), 115–126.
- [14] R. Engelking, General Topology, 2nd ed., Heldermann, Berlin, 1989.
- [15] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, D. S. Scott, *Continuous Lattices and Domains*, Cambridge Univ. Press, 2003.
- [16] O. Gutik, On the dichotomy of a locally compact semitopological bicyclic monoid with adjoined zero, Visnyk L'viv Univ., Ser. Mech.-Math. 80 (2015), 33–41.
- [17] O. Gutik, D. Repovš, On countably compact 0-simple topological inverse semigroups, Semigroup Forum 75 (2007), no. 2, 464–469.
- [18] O. Gutik, D. Repovš, Topological monoids of monotone, injective partial selfmaps of N having cofinite domain and image, Stud. Sci. Math. Hungar. 48 (2011), no. 3, 342–353.
- [19] O. Gutik, D. Repovš, On monoids of injective partial selfmaps of integers with cofinite domains and images, Georgian Math. J. 19 (2012), no. 3, 511–532.
- [20] O. Gutik, D. Repovš, On monoids of injective partial cofinite selfmaps, Math. Slovaca 65 (2015), no. 5, 981–992.
- [21] O. Gutik, A. Savchuk, On the semigroup ID_∞, Visn. Lviv. Univ., Ser. Mekh.-Mat. 83 (2017), 5–19 (in Ukrainian).
- [22] O. Gutik, A. Savchuk, The semigroup of partial co-finite isometries of positive integers, Bukovyn. Mat. Zh. 6 (2018), no. 1–2, 42–51 (in Ukrainian).
- [23] O. Gutik, A. Savchuk, On inverse submonoids of the monoid of almost monotone injective co-finite partial selfmaps of positive integers, Carpathian Math. Publ. 11 (2019), no. 2, 296-310.
- [24] O. Gutik, A. Savchuk, On the monoid of cofinite partial isometries of N with the usual metric, Visn. Lviv. Univ., Ser. Mekh.-Mat. 89 (2020), 17–30.
- [25] J. A. Hildebrant, R. J. Koch, Swelling actions of Γ-compact semigroups, Semigroup Forum 33 (1986), 65–85.
- [26] R. J. Koch, A. D. Wallace, *Stability in semigroups*, Duke Math. J. **24** (1957), no. 2, 193–195.
- [27] M. Lawson, Inverse Semigroups. The Theory of Partial Symmetries, Singapore: World Scientific, 1998.
- [28] M. Petrich, Inverse Semigroups, John Wiley & Sons, New York, 1984.
- [29] W. Ruppert, Compact Semitopological Semigroups: An Intrinsic Theory, Lect. Notes Math., 1079, Springer, Berlin, 1984.
- [30] V. V. Wagner, Generalized groups, Dokl. Akad. Nauk SSSR 84 (1952), 1119–1122 (in Russian).

[31] A. Weil, L'intégration dans les groupes topologiques et ses applications, Actualites Scientifiques No. 869, Hermann, Paris, 1940.

Ivan Franko National University of Lviv, Ukraine
 oleg.gutik@lnu.edu.ua, ogutik@gmail.com

Ivan Franko National University of Lviv, Ukraine pavlo.khylynskyi@lnu.edu.ua