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ON THE MONOID OF COFINITE PARTIAL ISOMETRIES
OF N WITH A BOUNDED FINITE NOISE
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Abstract. In the paper we study algebraic properties of the monoid INg[j]
1

of cofinite partial isometries of the set of positive integers N with the bounded
finite noise j. For the monoids INg[j]

1 we prove counterparts of some classical
results of Eberhart and Selden describing the closure of the bicyclic semigroup
in a locally compact topological inverse semigroup. In particular we show
that for any positive integer j every Hausdor↵ shift-continuous topology ⌧ on
INg[j]

1 is discrete and if INg[j]
1 is a proper dense subsemigroup of a Hausdor↵

semitopological semigroup S, then S\INg[j]
1 is a closed ideal of S, and moreover

if S is a topological inverse semigroup then S \ INg[j]
1 is a topological group.

Also we describe the algebraic and topological structure of the closure of the
monoid INg[j]

1 in a locally compact topological inverse semigroup.
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1. Introduction and preliminaries

In this paper we shall follow the terminology of [9, 12, 27, 29]. We shall denote
the first infinite cardinal by ! and the cardinality of a set A by |A|. By clX(A)
we denote the closure of subset A in a topological space X.

A semigroup S is called inverse if for any element x 2 S there exists a unique
x
�1 2 S such that xx�1

x = x and x
�1

xx
�1 = x

�1. The element x�1 is called the
inverse of x 2 S. If S is an inverse semigroup, then the function inv : S ! S which
assigns to every element x of S its inverse element x�1 is called the inversion.
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If S is a semigroup, then we shall denote the subset of all idempotents in S by
E(S). If S is an inverse semigroup, then E(S) is closed under multiplication and
we shall refer to E(S) as a band (or the band of S).

If S is an inverse semigroup then the semigroup operation on S determines the
following partial order 4 on S: s 4 t if and only if there exists e 2 E(S) such
that s = te. This order is called the natural partial order on S and it induces the
natural partial order on the semilattice E(S) [30].

An inverse subsemigroup T of an inverse semigroup S is called full if E(T ) =
E(S).

A congruence C on a semigroup S is called a group congruence if the quotient
semigroup S/C is a group. Any inverse semigroup S admits the minimum group

congruence Cmg:

aCmgb if and only if there exists e 2 E(S) such that ea = eb.

Also, we say that a semigroup homomorphism h : S ! T is a group homomorphism

if the image (S)h is a group, and h : S ! T is trivial if it is either an isomorphism
or annihilating.

The bicyclic monoid C (p, q) is the semigroup with the identity 1 generated by
two elements p and q subjected only to the condition pq = 1. The semigroup
operation on C (p, q) is determined as follows:

q
k
p
l · qmp

n = q
k+m�min{l,m}

p
l+n�min{l,m}

.

It is well known that the bicyclic monoid C (p, q) is a bisimple (and hence simple)
combinatorial E-unitary inverse semigroup and every non-trivial congruence on
C (p, q) is a group congruence [12].

If ↵ : X * Y is a partial map, then we shall denote the domain and the range
of ↵ by dom↵ and ran↵, respectively. A partial map ↵ : X * Y is called cofinite

if both sets X \ dom↵ and Y \ ran↵ are finite.
Let I� denote the set of all partial one-to-one transformations of a non-zero

cardinal � together with the following semigroup operation:

x(↵�) = (x↵)� if x 2 dom(↵�) = {y 2 dom↵ : y↵ 2 dom�}, for ↵,� 2 I�.

The semigroup I� is called the symmetric inverse (monoid) semigroup over the
cardinal � (see [12]). The symmetric inverse semigroup was introduced by Wag-
ner [30] and it plays a major role in the theory of semigroups. By I

cf
� is denoted

a subsemigroup of injective partial selfmaps of � with cofinite domains and ranges
in I�. Obviously, I

cf
� is an inverse submonoid of the semigroup I�. The semi-

group I
cf
� is called the monoid of injective partial cofinite selfmaps of � [20].

A partial transformation ↵ : (X, d) * (X, d) of a metric space (X, d) is called
isometric or a partial isometry, if d(x↵, y↵) = d(x, y) for all x, y 2 dom↵. It is
obvious that the composition of two partial isometries of a metric space (X, d) is
a partial isometry, and the converse partial map to a partial isometry is a partial
isometry, too. Hence the set of partial isometries of a metric space (X, d) with
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the operation of composition of partial isometries is an inverse submonoid of the
symmetric inverse monoid over the cardinal |X|. Also, it is obvious that the
set of partial cofinite isometries of a metric space (X, d) with the operation the
composition of partial isometries is an inverse submonoid of the monoid of injective
partial cofinite selfmaps of the cardinal |X|.

We endow the sets N and Z with the standard linear order.
The semigroup ID1 of all partial cofinite isometries of the set of integers Z

with the usual metric d(n,m) = |n � m|, n,m 2 Z, was studied in the papers
[7, 8, 21].

Let IN1 be the set of all partial cofinite isometries of the set of positive integers
N with the usual metric d(n,m) = |n � m|, n,m 2 N. Then IN1 with the
operation of composition of partial isometries is an inverse submonoid of I!. The
semigroup IN1 of all partial cofinite isometries of positive integers is studied in
[22]. There we described the Green relations on the semigroup IN1, its band
and proved that IN1 is a simple E-unitary F -inverse semigroup. Also in [22],
the least group congruence Cmg on IN1 is described and there it is proved that
the quotient-semigroup IN1/Cmg is isomorphic to the additive group of integers
Z(+). An example of a non-group congruence on the semigroup IN1 is presented.
Also it is proved that a congruence on the semigroup IN1 is a group congruence
if and only if its restriction onto an isomorphic copy of the bicyclic semigroup in
IN1 is a group congruence. In [24] it was shown that the monoid IN1 does not
embed isomorphically into the semigroup ID1. Moreover every non-annihilating
homomorphism h : IN1 ! ID1 has the following property: the image (IN1)h
is isomorphic either to Z2 or to Z(+). Also it is proved that IN1 does not have
a finite set of generators, and moreover it does not contain a minimal generating
set.

Later by I we denote the unit elements of IN1.

Remark 1.1. We observe that the bicyclic semigroup is isomorphic to the semi-
group CN which is generated by partial transformations ↵ and � of the set of
positive integers N, defined as follows:

dom↵ = N, ran↵ = N \ {1}, (n)↵ = n+ 1

and

dom� = N \ {1}, ran� = N, (n)� = n� 1

(see Exercise IV.1.11(ii) in [28]). It is obvious that I = ↵� and CN is a submonoid
of IN1.

The semigroup of monotone (order preserving) injective partial transformations
' of N such that the sets N \ dom' and N \ ran' are finite was introduced

in [18] and there it was denoted by I
%
1(N). Obviously, I

%
1(N) is an inverse

subsemigroup of the semigroup I!. The semigroup I
%
1(N) is called the semigroup

of cofinite monotone partial bijections of N. In [18] Gutik and Repovš studied
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properties of the semigroup I
%
1(N). In particular, they showed that I

%
1(N) is

an inverse bisimple semigroup and all of its non-trivial group homomorphisms
are either isomorphisms or group homomorphisms. It is obvious that IN1 is an
inverse submonoid of I

%
1(N).

A partial map ↵ : N * N is called almost monotone if there exists a finite subset
A of N such that the restriction ↵ |N\A : N \ A * N is a monotone partial map.

By I
�%
1 (N) we shall denote the semigroup of almost monotone injective partial

transformations of N such that the sets N \ dom' and N \ ran' are finite for all

' 2 I
�%
1 (N). Obviously, I

�%
1 (N) is an inverse subsemigroup of the semigroup

I! and the semigroup I
%
1(N) is an inverse subsemigroup of I

�%
1 (N) too. The

semigroup I
�%
1 (N) is called the semigroup of cofinite almost monotone injective

partial transformations of N. In the paper [11] the semigroup I
�%
1 (N) is studied.

In particular, it was shown that the semigroup I
�%
1 (N) is inverse, bisimple and

all of its non-trivial group homomorphisms are either isomorphisms or group ho-
momorphisms. In the paper [23] we showed that every automorphism of a full

inverse subsemigroup of I
%
1(N) which contains the semigroup CN is the identity

map. Also there we constructed a submonoid IN[1]
1 of I

�%
1 (N) with the following

property: if S be an inverse subsemigroup of I
�%
1 (N) such that S contains IN[1]

1 as
a submonoid, then every non-identity congruence C on S is a group congruence.
We show that if S is an inverse submonoid of I

�%
1 (N) such that S contains CN

as a submonoid then S is simple and the quotient semigroup S/Cmg, where Cmg

is minimum group congruence on S, is isomorphic to the additive group of inte-
gers. Also, topologizations of inverse submonoids of I

�%
1 (N) and embeddings of

such semigroups into compact-like topological semigroups established in [11, 23].
Similar results for semigroups of cofinite almost monotone partial bijections and
cofinite almost monotone partial bijections of Z were obtained in [19].

Next we need some notions defined in [22] and [23]. For an arbitrary positive
integer n0 we denote [n0) = {n 2 N : n > n0}. Since the set of all positive integers
is well ordered, the definition of the semigroup I

�%
1 (N) implies that for every

� 2 I
�%
1 (N) there exists the smallest positive integer n

d
� 2 dom � such that the

restriction �|[nd
�) of the partial map � : N * N onto the set

⇥
n
d
�

�
is an element of

the semigroup CN, i.e., �|[nd
�) is a some shift of

⇥
n
d
�

�
. For every � 2 I

�%
1 (N) we

put �!� = �|[nd
�), i.e.

dom�!
� =

⇥
n
d
�

�
, (x)�!� = (x)� for all x 2 dom�!

� and ran�!� = (dom�!
� ) �.

Also, we put

n
d
� = min dom � for � 2 I

�%
1 (N).
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It is obvious that n
d
� = n

d
� when � 2 CN, and n

d
� < n

d
� when � 2 I

�%
1 (N) \ CN.

Also for any � 2 IN1 we denote

n
r
� = (nd

� )� and n
r
� = (nd

� )�.

The results of Section 3 of [24] imply that nr
� �n

r
� = n

d
� �n

d
� for any � 2 IN1,

and moreover for any non-negative integer j

INg[j]
1 =

�
� 2 IN1 : nd

� � n
d
� 6 j

 

is a simple inverse subsemigroup of IN1 such that IN1 admits the following
infinite semigroup series

CN = INg[0]
1 = INg[1]

1 $ INg[2]
1 $ INg[3]

1 $ · · · $ INg[k]
1 $ · · · ⇢ IN1.

For any positive integer k the semigroup INg[k]
1 is called the monoid of cofinite

isometries of positive integers with the noise k.
A (semi)topological semigroup is a topological space with a (separately) con-

tinuous semigroup operation. An inverse topological semigroup with continuous
inversion is called a topological inverse semigroup.

A topology ⌧ on a semigroup S is called:

• a semigroup topology if (S, ⌧) is a topological semigroup;
• an inverse semigroup topology if (S, ⌧) is a topological inverse semigroup;
• a shift-continuous topology if (S, ⌧) is a semitopological semigroup.

The bicyclic monoid admits only the discrete semigroup Hausdor↵ topology
[13]. Bertman and West in [6] extended this result for the case of Hausdor↵
semitopological semigroups. Stable and �-compact topological semigroups do not
contain the bicyclic monoid [1, 25, 26]. The problem of embedding the bicyclic
monoid into compact-like topological semigroups was studied in [3, 4, 5, 17].

In this paper we study algebraic properties of the monoid INg[j]
1 and extend

results of the papers [13] and [6] to the semigroups INg[j]
1 , j > 0. In particular we

show that for any positive integer j every Hausdor↵ shift-continuous topology ⌧ on

INg[j]
1 is discrete and and if INg[j]

1 is a proper dense subsemigroup of a Hausdor↵

semitopological semigroup S, then S \ INg[j]
1 is a closed ideal of S, and moreover

if S is a topological inverse semigroup then S \ INg[j]
1 is a topological group. Also

we describe the algebraic and topological structure of the closure of the monoid

INg[j]
1 in a locally compact topological inverse semigroup.
Latter in this paper without loss of generality we may assume that j is an

arbitrary positive integer > 2.

2. Algebraic properties of the monoid INg[j]
1

The following simple proposition describes Green’s relations on the monoid

INg[j]
1 .
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Proposition 2.1. For elements � and � of the semigroup INg[j]
1 the following

statements hold:

(i) �L � in INg[j]
1 if and only if dom � = dom �;

(ii) �R� in INg[j]
1 if and only if ran � = ran �;

(iii) �H � in INg[j]
1 if and only if � = �;

(iv) �D� in INg[j]
1 if and only if dom � (ran �) and dom � (ran �) are isometric

subsets of N, i.e., there exists an isometry from dom � (ran �) onto dom �

(ran �);

(v) �J � in INg[j]
1 , i.e., INg[j]

1 is a simple semigroup.

Proof. Statements (i), (ii) and (iii) immediately follow from Proposition 3.2.11
of [27] and corresponding statements of Proposition 1 of [22].

Statement (iv) follows from the definition of the monoid and Proposition 3.2.5
of [27].

Statement (v) follows from Theorem 5 of [23]. ⇤
Proposition 2.2 follows from the definition of the natural partial order 4 on an

inverse semigroup and the statement that every element of the monoid INg[j]
1 is

a partial shift of the integers (see [22, Lemma 1]).

Proposition 2.2. Let � and � be elements of the monoid INg[j]
1 . Then the fol-

lowing conditions are equivalent:

(i) � 4 � in INg[j]
1

(ii) n
r
� � n

d
� = n

r
� � n

d
� and dom � ✓ dom �;

(iii) n
r
� � n

d
� = n

r
� � n

d
� and ran � ✓ ran �.

It is obvious that in statements (ii) and (iii) of Proposition 2.2 we may replace
the symbols nr

� and n
d
� by n

r
� and n

d
� , respectively.

The definition of the minimum group congruence Cmg on INg[j]
1 and Proposi-

tion 2.2 imply the following proposition.

Proposition 2.3. Let � and � be elements of the monoid INg[j]
1 . Then �Cmg�

in INg[j]
1 if and only if n

r
� � n

d
� = n

r
� � n

d
� . Moreover, the quotient semigroup

INg[j]
1 /Cmg is isomorphic to the additive group of integers Z(+) by the map

⇡Cmg : INg[j]
1 ! Z(+), � 7! n

r
� � n

d
� .

Example 2.4. We put CINg[j]
1 = INg[j]

1 t Z(+) and extend the multiplications

from INg[j]
1 and Z(+) onto CINg[j]

1 in the following way:

k · � = � · k = k + (�)⇡Cmg 2 Z(+), for all k 2 Z(+) and � 2 INg[j]
1 .

By Theorem 2.17 from [9, Vol. 1, p. 77] so defined binary operation is a semigroup

operation on CINg[j]
1 such that Z(+) is an ideal in CINg[j]

1 . Also, this semigroup
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operation extends the natural partial order 4 from INg[j]
1 onto CINg[j]

1 in the
following way:

(i) all distinct elements of Z(+) are pair-wise incomparable;

(ii) k 4 � if and only if nr
� � n

d
� = k for k 2 Z(+) and � 2 INg[j]

1 .

For any x 2 CINg[j]
1 we denote "4x =

�
y 2 CINg[j]

1 : x 4 y
 
.

By Proposition 7 of [22] the map h : IN1 ! CN, � 7! �!
� is a homomorphism.

Then its restriction h|
INg[j]

1
: INg[j]

1 ! CN is homomorphism, too.

A homomorphic retraction of a semigroup S is a map from S into S which is
both a retraction and a homomorphism. The image of the homomorphic retraction
is called a homomorphic retract. These terms seem to have first appeared in [10].

Since (�)h = �!
� = � for any � 2 CN we get the following proposition.

Proposition 2.5. The map h : INg[j]
1 ! CN, � 7! �!

� is a homomorphic retraction,

and hence the monoid CN is a homomorphic retract of INg[j]
1 .

For any subset M ✓ {2, . . . , j} we denote

INg[j]
1 [M ] =

�
� 2 INg[j]

1 : nd
� � x 2 M [ {0} for all x 2 dom � such that x 6 n

d
�

 
.

For arbitrary M1,M2 ✓ {2, . . . , j} it is obvious that INg[j]
1 [M1] ✓ INg[j]

1 [M2] if

and only if M1 ✓ M2, and moreover we have that INg[j]
1 [M ] = CN when M = ?

and INg[j]
1 [M ] = INg[j]

1 when M = {2, . . . , j}.

Remark 2.6. By Lemma 1 of [22] we get that

INg[j]
1 [M ] =

�
� 2 INg[j]

1 : nr
� � x 2 M [ {0} for all x 2 ran � such that x 6 n

r
�

 
.

Proposition 2.7. INg[j]
1 [M ] is an inverse semigroup of INg[j]

1 for any M ✓
{2, . . . , j}.

Proof. Fix any �, � 2 INg[j]
1 [M ]. We consider the following cases.

(1) If n
r
� 6 n

d
� then n

r
�� = n

r
� and ran(��) ✓ ran �, because by Lemma 1

from [22] all elements of IN1 are partial shifts of the set N. This and

Remark 2.6 imply that �� 2 INg[j]
1 [M ].

(2) If nr
� > n

d
� then by similar arguments as in the previous case we get that

n
d
�� = n

d
� and dom(��) ✓ dom �. This implies that �� 2 INg[j]

1 [M ].

Remark 2.6 implies that if � 2 INg[j]
1 [M ] then so is ��1. ⇤

3. On a topologization and a closure of the monoid INg[j]
1

Later in the paper by I we denote the identity map of N, and assume that ↵ and
� are the elements of the submonoid CN in IN1 which are defined in Remark 1.1.

It is obvious that ↵� = I and �↵ is the identity map of N \ {1}. This implies
the following lemma.
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Lemma 3.1. If � 2 IN1, then

(i) �↵ · � = � if and only if dom � ✓ N \ {1};
(ii) � · �↵ = � if and only if ran � ✓ N \ {1}.

For any positive integer i let "[i] be the identity map of the set N \ {i}.
The following theorem generalized the results on the topologizabily of the bi-

cyclic monoid obtained in [13] and [6].

Theorem 3.2. For any positive integer j every Hausdor↵ shift-continuous topol-

ogy ⌧ on INg[j]
1 is discrete.

Proof. Since ⌧ is Hausdor↵, every retract of
�
INg[j]

1 , ⌧
�
is its closed subset. It

is obvious that �↵ · INg[j]
1 and INg[j]

1 · �↵ are retracts of the topological space�
INg[j]

1 , ⌧
�
, because �↵ is an idempotent of INg[j]

1 . Later we shall show that the

set INg[j]
1 \

�
�↵ · INg[j]

1 [ INg[j]
1 · �↵

�
is finite.

By Lemma 3.1, � 2 INg[j]
1 \

�
�↵ · INg[j]

1 [ INg[j]
1 · �↵

�
if and only if 1 2 dom �,

1 2 ran �, and n
d
� � n

d
� 6 j. Then by Lemma 1 of [22], � is a partial shift of the

set of integers, and hence � is an idempotent of INg[j]
1 such that 1 2 dom � and

"
[2] · . . . · "[j�1] 4 �. It is obvious that such idempotents � are finitely many in

INg[j]
1 , and hence the set INg[j]

1 \
�
�↵ · INg[j]

1 [ INg[j]
1 · �↵

�
is finite. This implies

that the point I has a finite open neighbourhood and hence I is an isolated point

of the topological space
�
INg[j]

1 , ⌧
�
.

We observe that IN1, and hence INg[j]
1 , is a submonoid of the semigroup I

%
1(N)

of cofinite monotone partial bijections of N [22]. By Proposition 2.2 of [18] every

right translation and every left translation by an element of the semigroup I
%
1(N)

is a finite-to-one map, and hence such conditions hold for the semigroup INg[j]
1 .

Also by Theorem 5 of [23], INg[j]
1 is a simple semigroup. This implies that for any

� 2 INg[j]
1 there exist ↵,� 2 INg[j]

1 such that ↵�� = I, and moreover the equality

↵�� = I has finitely many solutions. Since I is an isolated point of
�
INg[j]

1 , ⌧
�
,

the separate continuity of the semigroup operation in
�
INg[j]

1 , ⌧
�
and the above

arguments imply that
�
INg[j]

1 , ⌧
�
is the discrete space. ⇤

The following proposition generalized results obtained for the bicyclic monoid
in [13] and [16].

Proposition 3.3. Let j be any positive integer and INg[j]
1 be a proper dense

subsemigroup of a Hausdor↵ semitopological semigroup S. Then I = S \ INg[j]
1 is

a closed ideal of S.

Proof. By Theorem 3.2, INg[j]
1 is a discrete subspace of S, and hence by Lemma 3

of [21], INg[j]
1 is an open subspace of S.
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Fix an arbitrary element y 2 I. If xy = z /2 I for some x 2 INg[j]
1 then

there exists an open neighbourhood U(y) of the point y in the space S such

that {x} · U(y) = {z} ⇢ INg[j]
1 . The neighbourhood U(y) contains infinitely

many elements of the semigroup INg[j]
1 . This contradicts Proposition 2.2 of [18],

which states that for each v, w 2 INg[j]
1 both sets

�
u 2 INg[j]

1 : vu = w
 

and
�
u 2 INg[j]

1 : uv = w
 
are finite. The obtained contradiction implies that xy 2 I

for all x 2 INg[j]
1 and y 2 I. The proof of the statement that yx 2 I for all

x 2 INg[j]
1 and y 2 I is similar.

Suppose to the contrary that xy = w /2 I for some x, y 2 I. Then w 2 INg[j]
1

and the separate continuity of the semigroup operation in S implies that there
exist open neighbourhoods U(x) and U(y) of the points x and y in S, respectively,
such that {x} · U(y) = {w} and U(x) · {y} = {w}. Since both neighbourhoods

U(x) and U(y) contain infinitely many elements of the semigroup INg[j]
1 , both

equalities {x} · U(y) = {w} and U(x) · {y} = {w} contradict mentioned above
Proposition 2.2 from [18]. The obtained contradiction implies that xy 2 I. ⇤
Lemma 3.4. Let j be any positive integer > 2. Then the element " · (�")j · ↵j

is

an idempotent of the submonoid CN for any idempotent " of the monoid INg[j]
1 .

Proof. Since I = ↵�, we have that

" · �"↵ · �2
"↵

2 · . . . · �j
"↵

j = " · (I�")j · ↵j = " · (�")j · ↵j

and
�
k
"↵

k · �k
"↵

k = �
k
"I"↵k = �

k
""↵

k = �
k
"↵

k
,

for any positive integer k. Also, "(�")j↵j is an idempotent of INg[j]
1 , because INg[j]

1
is an inverse semigroup and the product of idempotents in an inverse semigroup
is an idempotent as well.

By definitions of the partial transformations ↵ and � and the above part of the
proof we get that

(3.1) n
d
�k"↵k = n

d
" + k and n

d
�k"↵k = n

d
" + k,

and hence

(3.2) n
d
�k"↵k � n

d
�k"↵k = n

d
" � n

d
" ,

for any positive integer k. Then equalities (3.1) and (3.2) imply that for any
k = 1, . . . , j the idempotent

"k = "(�")k↵k

has the following properties:

n
d
"k = n

d
�k"↵k , n

d
"k = n

d
�k"↵k ,

and
1, . . . , nd

" , . . . , n
d
" + k � 1, nd

" � 1, nd
" , . . . , n

d
" + k � 1 /2 dom "k.
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Hence we get that "j is the identity map of
⇥
n
d
" + j

�
, which implies the statement

of the lemma. ⇤

Lemma 3.5. Let j be any positive integer and INg[j]
1 be a proper dense sub-

semigroup of a Hausdor↵ topological inverse semigroup S. Then there exists an

idempotent e 2 S \INg[j]
1 such that V (e)\E(CN) is an infinite subset for any open

neighbourhood V (e) of e in S.

Proof. By Proposition 3.3, S \ INg[j]
1 is an ideal of S. Since S is an inverse

semigroup, S \ INg[j]
1 contains an idempotent.

Put f be an arbitrary idempotent of S\INg[j]
1 . Since the unit element of a Haus-

dor↵ topological monoid is again the unit element of its closure in a topological
semigroup, for an arbitrary positive integer k by Proposition 3.3 we have that

�
k
f↵

k · �k
f↵

k = �
k
fIf↵k = �

k
ff↵

k = �
k
f↵

k
,

and hence �
k
f↵

k 2 E(S) \ E
�
INg[j]

1
�
. This implies that e = f · �f↵ · . . . · �j

f↵
j

is an idempotent in S because S is an inverse semigroup. The continuity of the
semigroup operation in S implies that for every open neighbourhood V (e) of the
point e in S there exists an open neighbourhood W (f) of the point f in S such
that

W (f) · � ·W (f)↵ · . . . · �j ·W (f) · ↵j ✓ V (e).

By Proposition II.3 of [13] the set W (f) \ E
�
INg[j]

1
�
is infinite. Since for any

positive integer n0 there exist finitely many idempotents " 2 INg[j]
1 such that

n
d
" = n0, we conclude that the set

�
n
d
" : " 2 W (f) \ E

�
INg[j]

1
� 

is infinite, too.

Then there exists an infinite sequence {'i}i2N of idempotents of W (f)\E
�
INg[j]

1
�

such that n
d
'i1

6= n
d
'i2

for any distinct positive integers i1 and i2. Lemma 3.5

implies that 'i · (�'i)j · ↵j is an idempotent of the submonoid CN which belongs

to V (e) for any positive integer i. Since the set
�
n
d
" : " 2 W (f) \ E

�
INg[j]

1
� 

is
infinite, the set V (e) \ E(CN) is infinite, too. ⇤

Theorem 3.6. Let j be any positive integer and INg[j]
1 be a proper dense sub-

semigroup of a Hausdor↵ topological inverse semigroup S. Then I = S \ INg[j]
1 is

a topological group.

Proof. We claim that the ideal I contains a unique idempotent.
Suppose to the contrary that I has at least two distinct idempotent e and f . By

Lemma 3.5 without loss of generality we may assume that the set V (e)\E(CN) is
infinite for any open neighbourhood V (e) of e in S. Since S is an inverse semigroup
ef = fe = h for some h 2 I\E(S). Fix an arbitrary open neighbourhood U(h) in
S. Then there exist disjoint open neighbourhoods W (e) and W (f) of the points
e and f in S, respectively, such that W (e) ·W (f) ✓ U(h). Since S is Hausdor↵,
we can additionally assume that W (e)\U(h) = ? if e 6= h and W (f)\U(h) = ?
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if f 6= h. Since e 6= f we conclude that W (e) \ U(h) = ? or W (f) \ U(h) = ?.

Since the set W (f) \ E
�
INg[j]

1
�
is infinite and for any positive integer n0 there

exist finitely many idempotents ◆ 2 INg[j]
1 such that n

d
◆ = n0, we conclude that

the set
�
n
d
◆ : ◆ 2 W (f) \ E

�
INg[j]

1
� 

is infinite as well. Also, the choice of the
neighbourhood W (e) implies that the set

�
n
d
◆ = n

d
◆ : ◆ 2 W (e) \ E

�
CN

� 
is

infinite, too. Then the semigroup operation in INg[j]
1 implies that there exist

idempotents ◆e 2 W (e) and ◆f 2 W (f) such that ◆e 2 ◆e ·W (f) and ◆f 2 ◆f ·W (e),
which implies W (e) \ U(h) 6= ? 6= W (f) \ U(h). But this contradicts the choice
of the neighbourhoods W (e), W (f), U(h).

Since S is an inverse semigroup, we have that xx�1 = x
�1

x = e for any x 2 I.
This implies that I is a subgroup of S with the unit element e. Also, the continuity
of semigroup operation and the inversion in S implies that I is a topological group
with the induced topology from S. ⇤

Lemma 3.7 follows from the definition of an element �!
� for an arbitrary � 2

I
�%
1 (N).

Lemma 3.7. For any � 2 I
�%
1 (N) the following statements hold:

(i) �!
� 2 CN;

(ii) �!
�

�1 =
��!
�
�1

;

(iii) �
�!
�

�1 = �!
�
�!
�

�1
;

(iv) �!
�

�1
� = �!

�
�1�!

� .

Proposition 3.8. Let j be any positive integer and INg[j]
1 be a proper dense

subsemigroup of a Hausdor↵ topological inverse semigroup S. Then the unique

idempotent of S \ INg[j]
1 commutes with all elements of the semigroup INg[j]

1 .

Proof. By Theorem 3.6, S \ INg[j]
1 is a group. Put e0 be the unique idempotent

of S \ INg[j]
1 . Also, by Lemma 3.5 the set U(e0) \ E(CN) is infinite for any open

neighbourhood U(e0) of the point e0 in S. This implies that e0 2 clS(CN). Then
by Proposition III.2 of [13], e0 · � = � · e0 for any � 2 CN.

Fix an arbitrary � 2 INg[j]
1 . By Lemma 3.7 we have that

�!
� ·�!� �1 · � = � ·�!� �1 ·�!� = �!

� 2 CN.

Since S is an inverse semigroup and S \ INg[j]
1 is an ideal of S, Lemma 3.7 implies

that

e0 · � =
�
e0 ·�!� ·�!� �1� · � = e0 ·

��!
� ·�!� �1 · �

�
=

= e0 ·�!� = �!
� · e0 =

�
� ·�!� �1 ·�!�

�
· e0 =

= � ·
��!
�

�1 ·�!� · e0
�
= � · e0.

This completes the proof of the proposition. ⇤
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Corollary 3.9. Let j be any positive integer and INg[j]
1 be a proper dense subsemi-

group of a Hausdor↵ topological inverse semigroup S. Then the group S \ INg[j]
1

contains a dense cyclic subgroup.

Proof. By Proposition 3.8, the unique idempotent e0 of S\INg[j]
1 commutes with all

elements of the semigroup INg[j]
1 and hence the map h : S ! S\INg[j]

1 , (�)h = e0 ·�
is a homomorphisms. Since S \ INg[j]

1 is a subgroup of S, by Corollary 1.32 of

[12] the image (INg[j]
1 )h is a cyclic group. Also, since INg[j]

1 is a dense subset
of a topological semigroup S, Proposition 1.4.1 of [14] implies that the image

(INg[j]
1 )h is a dense subset of S \ INg[j]

1 . ⇤

4. On a closure of the monoid INg[j]
1 in a locally compact

topological inverse semigroup

In [13] Eberhart and Selden described the closure of the bicyclic monoid in
a locally compact topological inverse semigroup. We give this description in the
terms of the monoid CN.

Example 4.1. The definition of the bicyclic monoid, its algebraic properties (see
[12, Section 1.12]) and Remark 1.1 imply that the following relation

� ⇠ � if and only if n
r
� � n

d
� = n

r
� � n

d
� , �, � 2 CN,

coincides with the minimum group congruence Cmg on CN. Moreover, the quotient
semigroup CN/Cmg is isomorphic to the additive group of integers Z(+) by the
map

⇡Cmg : CN ! Z(+), � 7! n
r
� � n

d
� .

The minimum group congruence Cmg on CN defines the natural partial order 4
on the monoid CN in the following way:

� 4 � if and only if n
r
� � n

d
� = n

r
� � n

d
� and n

d
� > n

d
� , �, � 2 CN.

We put CCN = CN t Z(+) and extend the multiplications from the semigroup CN
and the group Z(+) onto CCN in the following way:

k · � = � · k = k + (�)⇡Cmg 2 Z(+), for all k 2 Z(+) and � 2 CN.

Then so defined binary operation is a semigroup operation on CCN such that
Z(+) is an ideal in CCN. Also, this semigroup operation extends the natural
partial order 4 from CN onto CCN in the following way:

(i) all distinct elements of Z(+) are pair-wise incomparable;
(ii) k 4 � if and only if nr

� � n
d
� = k for k 2 Z(+) and � 2 CN.

For any x 2 CCN we denote "4x = {y 2 CCN : x 4 y}.
We define the topology ⌧lc on CCN in the following way:

(i) all elements of the monoid CN are isolated points in (CCN, ⌧lc);
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(ii) for any k 2 Z(+) the family Blc(k) = {Ui(k) : i 2 N}, where
Ui(k) = {k} [

�
� 2 CN : k 4 � and n

d
� > i

 
,

is the base of the topology ⌧lc at the point k 2 Z(+).

In [13] Eberhart and Selden proved that ⌧lc is the unique Hausdor↵ locally
compact semigroup inverse topology on CCN. Moreover, they shown that if CN is
a proper dense subsemigroup of a Hausdor↵ locally compact topological inverse
semigroup S, then S is topologically isomorphic to (CCN, ⌧lc).

Example 4.2. Let CINg[j]
1 be a semigroup defined in Example 2.4. Put M be an

arbitrary subset of {2, . . . , j}.
We define the topology ⌧

M
lc on CINg[j]

1 in the following way:

(i) all elements of the monoid INg[j]
1 are isolated points in

�
CINg[j]

1 , ⌧
M
lc

�
;

(ii) for any k 2 Z(+) the family B
M
lc (k) =

�
U

M
i (k) : i 2 N

 
, where

U
M
i (k) = {k} [

�
� 2 CINg[j]

1 [M ] : k 4 � and n
d
� > i

 
,

is the base of the topology ⌧
M
lc at the point k 2 Z(+).

Remark 4.3.

1. We observe that a simple verifications show that the following conditions
hold:
(i) if k = 0 then U

M
i (k) = U

M
i (0) = {0} [

�
� 2 CINg[j]

1 [M ] : k 4
� and � /2 "4�i�2

↵
i�2

 
;

(ii) if k > 0 then U
M
i (k) = {0} [

�
� 2 CINg[j]

1 [M ] : k 4 � and � /2
"4�i�2

↵
i�2+k

 
;

(iii) if k < 0 then U
M
i (k) = {0} [

�
� 2 CINg[j]

1 [M ] : k 4 � and � /2
"4�i�2�k

↵
i�2

 
.

2. Since all elements of the monoid INg[j]
1 are isolated points in

�
CINg[j]

1 , ⌧
M
lc

�

and all distinct elements of the subgroup Z(+) are incomporable with the

respect to the natural partial order on CINg[j]
1 , Proposition 2.2 implies

that ⌧
M
lc is a Hausdor↵ topology on CINg[j]

1 . Also, since for any � 2 CN
the set "4� is finite we get that UM

i (k) is compact for any k 2 Z(+) and

any positive integer i. This implies that the space
�
CINg[j]

1 , ⌧
M
lc

�
is locally

comapct, and hence by Theorems 3.3.1, 4.2.9 and Corollary 3.3.6 from [14]
it is metrizable.

Proposition 4.4.
�
CINg[j]

1 , ⌧
M
lc

�
is a topological inverse semigroup.

Proof. Since all elements of the monoid INg[j]
1 are isolated points in

�
CINg[j]

1 , ⌧
M
lc

�

and all distinct elements of the subgroup Z(+) commute with elements of INg[j]
1 ,

it is su�ces to check the continuity of the semigroup operation at the pairs (�, k1)

and (k1, k2) where � 2 INg[j]
1 and k1, k2 2 Z(+).
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Fix any � 2 INg[j]
1 and k 2 Z(+). Then �!

� = �
p
↵
r for some fixed non-negative

integers p and r. Hence

� · k = (�)⇡Cmg + k =
��!
�
�
⇡Cmg + k = r � p+ k,

and for any positive integer i > max {p, r}+ j we have that

� · UM
i (k) ✓ U

M
i (r � p+ k).

Fix any k1, k2 2 Z(+). Then for any positive integer i > j by Proposition 1.4.7
of [27] and Proposition 2.7 we have that UM

i (k1) · UM
i (k2) ✓ U

M
i (k1 + k2).

The above arguments and the equality
�
U

M
i (k)

��1
= U

M
i (�k) complete the

proof of the proposition. ⇤

Lemma 4.5. Let j be any positive integer and INg[j]
1 be a proper dense sub-

semigroup of a Hausdor↵ locally compact topological inverse semigroup S. Then

G = S \ INg[j]
1 is topologically isomorphic to the discrete additive group of integers

Z(+).

Proof. By Corollary 3.9, G is a subgroup of INg[j]
1 which contains a dense cyclic

subgroup. By Theorem 3.2, INg[j]
1 is a discrete subspace of S, and hence by

Theorem 3.3.9 of [14], G is a closed subspace of S. Then Theorem 3.3.8 of [14]
and Theorem 3.6 imply that G with the induced topology from S is a locally
compact topological group. By the Weil Theorem (see [31]) the topological group
G is either compact or discrete. By Lemma 3.5 the remainder clS(CN) \ CN of
the subsemigroup CN in S is non-empty. Then by Theorem 3.3.8 of [14], clS(CN)
is a locally compact space. Theorem V.7 of [13] implies that H = clS(CN) \ CN
is a group, which is topologically isomorphic to the discrete additive group of
integers Z(+). By Proposition 1.4.19 of [2], H is a closed discrete subgroup of
G, and hence by Theorem 1.4.23 of [2] the topological group G is topologically
isomorphic to the discrete additive group of integers Z(+). ⇤

A partial order  on a topological space X is called closed (or continuous) if the
relation  is a closed subset of X⇥X in the product topology [15]. A topological
space with a closed partial order is called a pospace.

Later we assume that INg[j]
1 is a proper dense subsemigroup of a Hausdor↵

locally compact topological inverse semigroup S and we identify the topological
group G with the discrete additive group of integers Z(+).

We observe that equality "4k = {� 2 S : � · 0 = k} implies that "4k is an open-

and-closed subset of S for any k 2 Z(+). Since INg[j]
1 is a discrete subspace of S

the above arguments and Lemma 4.5 imply the following lemma:

Lemma 4.6. The natural partial order 4 on S is closed, and moreover "4x is

open-and-closed subset of S for any x 2 S.
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Lemma 4.7. For any k, l 2 Z(+) the subspace "4k and "4l of S are homeomor-

phic. Moreover, the map P↵k : "40 ! "4k, x 7! x · ↵k
is a homeomorphism for

k > 0, and the map ⇤�k : "40 ! "4k, x 7! �
k · x is a homeomorphism for k < 0.

Proof. Proposition 1.4.7 from [27] implies that the maps P↵k and ⇤�k are well
defined. It is obvious that complete to prove that the second part of the lemma
holds. We shall show that the map P↵k determines a homeomorphism from "40
onto "4k. In the case of the map ⇤�k the proof is similar.

We define a map P�k : "4k ! "40 by the formula (x)P�k = x · �k. Then we
have that (0)P↵k = k and (k)P�k = 0. Moreover, we have that (x)P↵kP�k = x

for any x 2 "40 and (y)P�kP↵k = y for any y 2 "4k. Therefore the composi-
tions of maps P↵kP�k : "40 ! "40 and P�kP↵k : "4k ! "4k are identity maps of
the sets "40 and "4k, respectively. Hence the maps P↵k and P�k are bijections,
and hence P�k is inverse of P↵k . Since right translations in the topological semi-
group S are continuous, the maps P↵k : "40 ! "4k and P�k : "4k ! "40 are
homeomorphisms. ⇤

By Lemma 3.5 the remainder clS(CN) \ CN of the subsemigroup CN in S is
non-empty. Also, Theorem V.7 of [13] implies that the remainder clS(CN) \ CN
is a group, which is topologically isomorphic to the discrete additive group of
integers Z(+). This and results of [13, Section V] (see Example 4.1) imply the
following proposition:

Proposition 4.8. Let j be any positive integer and INg[j]
1 be a proper dense sub-

semigroup of a Hausdor↵ locally compact topological inverse semigroup
�
CINg[j]

1 , ⌧
�
.

Then ⌧ induces the topology ⌧lc on the semigroup CCN.

If M = ? then we denote the locally compact semigroup inverse topology ⌧
M
lc

on the monoid CINg[j]
1 by ⌧

?
lc . Also in the case when M = {2, . . . , j} we denote

the topology ⌧
M
lc on CINg[j]

1 by ⌧
[2:j]
lc .

Proposition 4.8 implies the following:

Proposition 4.9. Let j be any positive integer and INg[j]
1 be a proper dense sub-

semigroup of a Hausdor↵ locally compact topological inverse semigroup
�
CINg[j]

1 , ⌧
�
.

Then ⌧
?
lc ✓ ⌧ ✓ ⌧

[2:j]
lc .

Theorem 4.10. Let j be any positive integer and INg[j]
1 be a proper dense subsemi-

group of a Hausdor↵ locally compact topological inverse semigroup (S, ⌧). Then

(S, ⌧) topologically isomorphic to the topological inverse semigroup
�
CINg[j]

1 , ⌧
M
lc

�

for some subset M of {2, . . . , j}.
Proof. Lemma 4.5 implies that the inverse semigroup S is isomorphic to the

monoid CINg[j]
1 . Also, by the definition of the monoid INg[j]

1 , Lemma 4.7 and
Proposition 4.9 we get that there exists a maximal subset M1 of {2, . . . , j} such
that the following condition holds:
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(⇤) for every open neighbourhood V0 of the point 0 2 Z(+) in
�
CINg[j]

1 , ⌧
�

there exists an open neighbourhood U
M1
i (0) of 0 in

�
CINg[j]

1 , ⌧
M1
lc

�
such

that UM1
i (0) ✓ V0 and V0 \ UM1

i (0) is infinite.

Since the topology ⌧ is locally compact and INg[j]
1 is a discrete subsemigroup of�

CINg[j]
1 , ⌧

�
, without loss of generality we may assume that the open neighbour-

hood V0 is compact.
The maximality of M1 and condition (⇤) imply that there exists a subset M1

1 ✓
{2, . . . , j} such that M1 ⇢ M

1
1 ,
��M1

1 \M1

�� = 1 and for every open neighbourhood

V0 of the point 0 2 Z(+) in
�
CINg[j]

1 , ⌧
�
the following conditions hold:

(4.1)
���
⇣
V0 \ U

M1
1

i (0)
⌘
\ UM1

i (0)
��� = 1 and

���UM1
1

i (0) \
⇣
V0 \ U

M1
1

i (0)
⌘��� = 1.

By continuity of the semigroup operation in
�
CINg[j]

1 , ⌧
�
there exists a compact-

and-open neighbourhood U0 ✓ V0 of the point 0 2 Z(+) in the space
�
CINg[j]

1 , ⌧
�

such that � · U0 · ↵ ✓ V0. Then the semigroup operation of CINg[j]
1 , the above

inclusion and conditions (4.1) imply that the set V0 \ U0 is infinite, which con-
tradicts the compactness of V0. This and maximality of M1 imply that the set
V0 \ U

M1
i (0) is finite for every open neighbourhood V0 of the point 0 2 Z(+) in�

CINg[j]
1 , ⌧

�
and any open neighbourhood U

M1
i (0) of 0 in

�
CINg[j]

1 , ⌧
M1
lc

�
. Then the

bases of ⌧ and ⌧
M1
lc at the point 0 2 Z(+) coincide, and hence by Lemma 4.7 we

get that ⌧ = ⌧
M1
lc . ⇤

Corollary 4.11. For any positive integer j there exists exactly 2j�1
pairwise

topologically non-isomorphic Hausdor↵ locally compact semigroup inverse topolo-

gies on the monoid CINg[j]
1 .
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