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1. Introduction

Here, conformal geometry is seen as the theory of invariants of Möbius trans-
formations of space forms S

3, R3 or H
3. Since the Euclidean space R

3 and the
hyperbolic space H

3 are conformally equivalent to open subspaces of the sphere
S
3, the case of S3 is of greatest interest.
All the Möbius transformations of one of the spaces under consideration can be

presented as a composition of spherical inversions and spherical inversions map
spheres (or planes) onto spheres (or planes), the notion of sphere is conformally
invariant. Since all these transformations are smooth, they map spheres osculating
a surface onto spheres osculating its images. Also, they transform envelopes of
families of spheres onto envelopes of corresponding families of their images.

Canal surfaces considered in this article are defined as envelopes of one param-
eter families of spheres. Surfaces of this sort can be found easily in nature: water
pipes, hoses for vacuum cleaners and blood vessels being some of them. Their
analytic models play an important role in 3D computer graphics. The simplest
examples of canal surfaces are provided by surfaces of revolution and their images
by Möbius transformations, spherical inversions in particular.

Foliations (here, of 3-dimensional manifolds) are particular families of con-
nected and pairwise disjoint surfaces (called leaves) filling the manifolds. In dif-
ferential geometry, several authors discuss existence, properties and classification
of foliations by leaves satisfying particular geometric conditions, for example being
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totally geodesic, minimal, umbilical, of either constant, or positive, or negative
curvatures (sectional, Ricci, scalar, mean etc.) and so on (see [30, 31] and the
bibliographies therein).

In this article, we provide a survey of results concerning canal surfaces and canal
foliations, that is foliations of 3-dimensional manifolds of constant curvature by
leaves being canal surfaces, obtained recently (2000 – 2020) by the author and
his collaborators. In Section 2, we describe (after [10] and [19]) a useful and
well known interpretation of 2-dimensional oriented spheres S ⇢ S

3 as points of
the 4-dimensional de Sitter space. Section 3 is devoted to a description of local
conformal invariants of surfaces used in the description of canal surfaces. Section
4 contains a survey of results on canal surfaces while Section 5 those on canal
foliations.

Acknowledgments. The author expresses his gratitude to his collaborators for
several years of cooperation and friendship, and to the organizers of the conference
Contemporary Mathematics in Kielce 2020 at Jan Kochanowski University for
giving him an opportunity to present the survey.

2. Space of spheres

Consider the 5-dimensional Lorenz space L5, that is the vector space R5 equipped
with the Lorentz quadratic form L and the associated Lorentz bilinear form L(·, ·)
given by

L(x0, · · · , x4) = �x20 + x21 + · · ·+ x24

and

L(u, v) = �u0v0 + u1v1 + · · ·+ u4v4

when u = (u0, y1, . . . , u4) and v = (v0, v1, . . . , v4).
The isotropy cone Liso = {v 2 R

5 ; L(v) = 0} of L is called the light cone. Its
non-zero vectors are also called light-like. The light cone splits the set of nonzero
vectors v 2 L

5 into two classes: A vector v in R
5 is called space-like if L(v) > 0 and

time-like if L(v) < 0. A straight line is called space-like (respectively, time-like)
if it contains a space-like (respectively, time-like) vector.

The de Sitter space ⇤4 is defined as the set of all the points x = (x0, x1, . . . , x5)
of R5 for which L(x) = 1.

The points at infinity of the light cone in the upper half space {x0 > 0} form
a 3-dimensional sphere. Let us denote it by S3

1. Since it can be considered as the
set of lines through the origin in the light cone, it is identified with the intersection
S3
1
of the upper half light cone and the hyperplane {x0 = 1}, which is given by

S3
1
= {(x1, · · · , x4) |x21 + · · ·+ x2

4
= 1}.

To each point � 2 ⇤4 there corresponds a sphere ⌃ = �?\S3
1 (or, ⌃ = �?\S3

1
),

where �? is the 4-dimensional vector subspace of R5 orthogonal (with respect to
the form L) to the straight line passing through � and the origin (see Figure 1,
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Figure 1. Spheres as points of de Sitter space.

where – by obvious technical reasons – the dimensions of all the geometric objects
are reduced by 2: 5 7! 3, 4 7! 2, 3 7! 1 and 2 7! 0 ).

Since (��)? = �?, we get two copies of the same sphere ⌃ ⇢ S
3 equipped with

two opposite orientations. This is why de Sitter space ⇤4 can be identified with
the space of oriented 2-spheres contained in S

3.
A regular curve � : I ! R

5 is called space-like if, at each point t ot the inerval
I, its tangent vector �̇(t) is space-like, that is L(�̇(t)) > 0. If �(I) ⇢ ⇤4, � can be
considered as the one-parameter family of the corresponding spheres ⌃(t). If both
these conditions are satisfied, the family of spheres ⌃(t) associated to the points
�(t), t 2 I, defines an envelope. An extra condition is necessary to guarantee that
the envelope is immersed: all the geodesic acceleration vectors ~kg(t) = �̈(t)+�(t),
t 2 I, should be time-like.

Certain motivation for considering the correspondence �  ! ⌃ between points
� of de Sitter space ⇤4 and spheres ⌃ ⇢ S

3 arises from the following.
Given two two-dimensional spheres S and ⌃ in R

3 (or, S3), the spherical inver-
sion of ⌃ with respect to S is another sphere (or, a plane considered as a sphere of
infinite radius) ⌃̃ = ◆S(⌃). The corresponding points s,� and �̃ of ⇤4 are related



278 P. WALCZAK

by

(2.1) �̃ = 2L(s,�)s� �.

From (2.1), several properties of spherical inversion follow easily. For example,

◆S(S) = S, ◆2S(⌃) = ⌃, L(◆s(�1), ◆s(�2)) = L(�1,�2)

for all the spheres S,⌃,⌃1,⌃2 ⇢ S
3 (and the corresponding points �1,�2 of ⇤4).

Therefore, spherical inversions considered in ⇤4 appear to be isometries with
respect to the Lorenz scalar product. Since, all the conformal transformations
of S3 are compositions of such inversions, we arrive at

Proposition 2.1. All the conformal transformations of the sphere S
3 become

Lorenzian isometries of ⇤4 under the correspondence between 2-spheres ⌃ ⇢ S
3

and points of de Sitter space ⇤4 we discussed here.

Remark 2.2. Note that the analytic description of the inversive image ⌃̃ in
Euclidean coordinates is significantly more complicated than that of �̃ in (2.1):

⌃̃ = S
⇣
o+

⇢2(c� o)

kc� o}2 � r
,

⇢2r

(kc� ok2 � r)2)2

⌘

when ⌃ = S(c, r) and S = S(o, ⇢) is the sphere of inversion.

3. Conformal invariants

Assume now that S is a surface which is umbilic free, that is, that the principal
curvatures k1(x) and k2(x) of S are di↵erent at any point x of S. Let X1 and X2

be unit vector fields tangent to the curvature lines corresponding to, respectively,
k1 and k2. Throughout the paper, we assume that k1 > k2. Put µ = (k1 � k2)/2.
For a long time, it is known ([34], see also [7]) that the vector fields ⇠i = Xi/µ
and the coe�cients ✓i (i = 1, 2) in

[⇠1, ⇠2] = �
1

2
(✓2⇠1 + ✓1⇠2)

are invariant under arbitrary (orientation preserving) conformal transformation
of the Euclidean space R

3. (In fact, they are invariant under arbitrary confor-
mal change of the Riemannian metric on R

3.) Elementary calculations involving
Codazzi equations show that

✓1 =
1

µ2
·X1(k1) and ✓2 =

1

µ2
·X2(k2).

The quantities ✓i (i = 1, 2) are called conformal principal curvatures of S.
Another conformally invariant scalar quantity  can be derived from the deriva-

tion of the Bryant’s conformal Gauss map � which maps a point x of S to the
sphere tangent at x to S that has the same mean curvature as S at x (see [4]).
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The sphere �(x) can be seen as a point of ⇤4 ⇢ lL5. We get (with all the scalar
products h·, ·i below denoting the Lorentz bilinear form L in L

5)

1

2

�
h⇠1(⇠1(�)), ⇠1(⇠1(�))i � h⇠2(⇠2(�)), ⇠2(⇠2(�))i

�h⇠1(⇠1(�)), ⇠2(�)i2 + h⇠2(⇠2(�)), ⇠1(�)i
�

=  +
1

2

�
✓21 � ✓22 + ⇠1(✓1) + ⇠2(✓2)

�
.(3.1)

The quantities on both sides of the above equality are equal to

(3.2)
1

µ3

�
4H + 2µ2H

�
,

where H is the mean curvature of S and 4 is the Laplace operator on S equipped
with the Riemannian metric induced from the ambient space. Moreover, this
quantity appears in the Euler-Lagrange equation for Willmore functional

S 7!
Z

S
µ2d area.

The vector fields ⇠1, ⇠2 (or, the dual 1-forms !1,!2) together with quantities
✓1, ✓2 and  generate all the local conformal invariants for surfaces and determine
a surface locally up to conformal transformations of R3 ([16], see also [7] again).

Define (5⇥ 5) matrices A1 and A2 by

(3.3) A1 =

0

BBBB@

✓1/2 �(1 +  )/2 b/2 ✓1/2 0
1 0 0 �1 (1 +  )/2
0 0 0 0 �b/2
0 1 0 0 �✓1/2
0 �1 0 0 �✓1/2

1

CCCCA

and

(3.4) A2 =

0

BBBB@

�✓2/2 �c/2 �(1� )/2 ✓2/2 0
0 0 0 0 c/2
1 0 0 1 (1� )/2
0 0 �1 0 �✓2/2
0 0 �1 0 ✓2/2

1

CCCCA
,

where b = �✓1✓2 + ⇠2(✓1) and c = ✓1✓2 + ⇠1(✓2).

Proposition 3.1 (Fialkov, [16]). Given a simply connected domain U ⇢ R
2,

linearly independent 1-forms !1 and !2 and smooth functions ✓1, ✓2 and  defined
on U for which the matrix valued 1-form !,

(3.5) ! = A1!1 +A2!2,

satisfies the structural equation

(3.6) d! + (1/2)[!,!] = 0,
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there exists an immersion ◆ : U ! R
3 for which S = ◆(U) realizes these forms and

functions as local conformal invariants.

The integrability condition (3.6) implies the following.

Proposition 3.2 ([2]). Any surface S ⇢ R
3 with constant conformal principal

curvatures has at least one of these curvatures equal to zero.
Moreover, for arbitrary constant c, the family of all the immersed in R

3 surfaces
S = ◆(R2) with constant conformal principal curvatures 0 and c is nonempty and
parametrized by triples (f2, C1, C2), where f2 and C1 are smooth real functions of
one variable while C2 is a real constant. The corresponding surface S admits the
conformally invariant 1-forms !i = fidxi with f1 given by

(3.7) f1(x1, x2) = C1(x1) · e�
1
2 c

R x2
0 f2(t)dt,

where C1 : R ! R is arbitrary smooth function while the Bryant conformal in-
variant  of S is given by

(3.8)  (x1, x2) = C2 · exp
⇣
� c ·

Z x2

0

f2(t)dt
⌘
� 2.

Example 3.3. Torus, cylinder and cone of revolution, and their images under
arbitrary Möbius transformations are the only surfaces with both conformal prin-
cipal curvatures equal to zero. All these surfaces are called Dupin cyclides.

Figure 2. A Dupin cyclide.

In [11, 12, 13], Darboux mentioned several results concerning Dupin cyclides.
Among them, one can find the following.

Proposition 3.4 (Darboux). Dupin cyclides are the only surfaces that are in two
di↵erent ways envelopes of one-parameter families of spheres as well as the only
surfaces that have circles as all the lines of curvature.



CANAL SURFACES AND FOLIATIONS – A SURVEY 281

4. Canal surfaces

As mentioned in Introduction, canal surfaces in space forms are defined as the
envelopes of one-parameter families of spheres. Therefore, they can be seen as
space-like curves in de Sitter space ⇤4 (of time-like geodesic curvature vectors
when regularly immersed).

Since all the Möbius transformations map spheres to spheres, the notion of canal
belongs to conformal geometry: conformal image of a canal surface is a canal sur-
face. The simplest examples of canal surfaces are provided by Dupin cyclides (see
Section 3), surfaces of revolution and their images under Möbius transformations.

By definition, any canal surface S in R
3 is the solution of a system of equations

(4.1)

(
(x� x(t))2 + (y � y(t))2 + (z � z(t))2 = r(t)2,

x0(t)(x� x(t)) + y0(t)(y � y(t)) + z0(t)(z � z(t)) = r0(t)r(t),

where – obviously – the first of these equations defines a sphere enveloped by S
while the second one – a plane. The intersection of the osculating sphere with
the corresponding plane is – in general – a circle contained in S and is called
a characteristic circle of S.

Proposition 4.1. Characteristic circles of canal surfaces appear to be their lines
of curvature corresponding to the principal conformal curvature, say ✓1, vanishing
identically along the surface: ✓1(p) = 0 for any point p of the canal surface under
consideration.

In some sense, canal surfaces admit osculating Dupin cyclides called in [1]
necklaces. (For a discussion of osculation of Dupin cyclides and arbitary surfaces
see [3].)

Theorem 4.2 ([1]). The osculating spheres �2(�) for the principal curvature k2
along a characteristic circle � (being a line of principal curvature for k1 parametri-
zed by �) have an envelope which is a Dupin cyclide D; in other terms the corre-
sponding points �2(�) 2 ⇤4 form a circle.

Since osculating spheres have order of tangency 2 with the corresponding canal,
the Bryant invariants  S and  N of a canal surface S and its necklace N are equal
along the characteristic circle of their tangency. Since  N is constant, we get the
following.

Corollary 4.3 ([1]). The Bryant invariant of a canal surface is constant along
its characteristic circles.

The above Corollary and the condition ✓1 ⌘ 0 satisfied for all the canals moti-
vates the interest in canal surfaces for which ✓2 is constant along the characteristic
circles. Such canals are called in [1] special.
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Special canals. Let us classify special canals, that is canal surfaces satisfying
the conditions

(4.2) ✓1 = 0, ✓2 is constant along characteristic circles.

Theorem 4.4 ([1]). A surface S in R
3 is a special canal if and only if it is

a conformal image of either a surface of revolution or a cylinder over a planar
curve, or a cone.

Note that the three classes of surfaces listed in the above theorem can be
characetrized in terms of de Sitter space ⇤4:

Proposition 4.5 ([1]).

(i) Special canal surfaces are envelopes of spheres which form a curve � con-
tained in ⇤4 \ V , V being a 3-dimensional vector subspace of R5.

(ii) V is of mixed type (resp., degenerate, resp. space-like) whenever S is
a conformal image of a surface of revolution (resp., a cylinder, resp.,
a cone).

(iii) in this case, the intersection ⇤4 \ V looks like a 2-dimensional de Sitter
subspace ⇤2 of ⇤4, resp., a cylinder generated by parallel light-rays, resp.,
a sphere.

Now, let us recall that a surface S in R
3 is said to be isothermic whenever it

is obtained locally by charts (x1, x2) such that the curves xi = const., i = 1, 2,
coincide with the curvature lines on S. In other words, S is isothermic whenever
there exists a positive function f such that the Lie bracket [f⇠1, f⇠2] vanishes
identically. From the definition of conformal principal curvatures in Section 3 it
follows that this condition is equivalent to the following one:

⇠1(f) = (1/2)f⇠2, ⇠2(f) = (�1/2)f⇠1.
Note that this is a conformally invariant notion: the image of an isothermic surface
by a Möbius transformation in again isothermic. For more information about such
surfaces (and, more general, submanifolds of higher dimension) see, for example,
[5], [6] and the bibliographies therein.

Finally, if S is an isothermic canal, then, say, ✓1 = 0 , ⇠2(f) = 0, f is constant
along characteristic circles, the same holds for ⇠2(f) and for ✓2 = �2⇠2(f)/f . This
yields the following.

Theorem 4.6 ([1]). Any isothermic canal surface is special.

In [28], it has been shown that any Willmore canal surface, that is a canal
surface which is a critical point of the Willmore functional

S 7!
Z

S
µ2dA,

is isothermic. Therefore,

Corollary 4.7. Any Willmore canal is special.
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5. Canal foliations

Recall (see, for example, [9] and[18]) that a p-dimensional Cr-foliation F
(r = 0, 1, . . . , 1) on an n-dimensional manifold M is a decomposition of M
into connected submanifolds – called leaves – such that for any x 2 M there
exists a Cr-di↵erentiable chart � = (�0,�00) : U ! R

n = R
p ⇥ R

q defined on
a neighbourhood U of x and satisfying the condition

(⇤) for any L of F , the connected components – called plaques – of L\U are
given by the equation �00 = const.

The simplest examples of foliations are provided by submersions F : M ! N
with leaves being the connected components of the fibers F�1(y), y 2 N , in
particular by productsM = M1⇥M2 of connected manifolds with leavesM1⇥{y},
y 2 M2. The first non-trivial example of a foliation of the sphere S

3 = {(w, z) 2
C
2; |w|2+ |z|2 = 1} has been provided by Reeb [29]: the Reeb foliation is obtained

by gluing along the common toral boundary T 2 = {(w, z); |w|2 = |z|2 = 1/2}
the two Reeb components (see Figure 3) which can be produced from the strip
[�1, 1] ⇥ R foliated by the boundary lines and the graphs of smooth functions
f + c, c 2 R, where f : (�1, 1) ! R satisfies f(�t) = f(t), f 00(t) > 0 and
limt!±1 f(t)+1, by: first, the rotation around the axis t = 0 of symmetry of the
strip, then passing to the quotient D2 ⇥ R/Z, Z being the group of translations
generated by (w, s) 7! (w, s+ 1), |w|  1, s 2 R.

Figure 3. A Reeb component.

Observe that Reeb components can be foliated by canal surfaces, therefore
the same happens to Reeb foliations of S3. Foliations of 3-manifolds of constant
curvature by canal surfaces are called here canal foliations.

One of the procedures which allows to produce more complicated foliations
from given ones is called turbulization.

Let us begin with a 2-dimensional foliation F of a manifold M , dimM = 3.
Find a loop � transverse to F and its tubular neighbourhood N(�) ⇡ D2 ⇥ S1.
Replace F outside N(�) by the foliation shown in Figure 4 and fill the interior
of N(�) with a Reeb component. The resulting foliation F 0 is the turbulized F .
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In Figure 4, L is a piece of a leaf of F and � a curve on L while L0 is a piece of
a leaf of F 0 and �0 a curve on L0.

Figure 4. Turbulization.

Certainly, this procedure can be repeated as long as we can find new loops
transverse to the foliation under consideration and turbulizations of canal folia-
tions can sometimes provide new canal foliations.

Similarly to the construction of Reeb components, one can foliate the zone
Z = T 2 ⇥ [0, 1] by a family of tori T 2 ⇥ {t}, t 2 A, A ⇢ [0, 1] being closed, and
filling the zones between two consecutive tori with cylinders spiralling from one
boundary component of such zone towards the other one, Figure 5.

Figure 5. Two ways of spiraling.

Canal foliations of the sphere S
3 have been classified:

Theorem 5.1 ([26]). Any foliation F of S3 by canal surfaces is either

• a Reeb foliation with the toral leaf being a Dupin cyclide or
• is obtained from such a Reeb foliation inserting a zone Z ' T

2 ⇥ [0, 1]
foliated by toral and cylindrical leaves (as described above).
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A question about the existence of canal foliations on other 3-manifolds of con-
stant curvature arises in a natural way.

The first step is to ask about existence of foliations by the simplest canals:
Dupin cyclides. Such foliations are called Dupin foliations here.

Theorem 5.2 ([25]). (i) Dupin foliations of S3 do not exist.
(ii) The only Dupin foliations of R3 are these by parallel planes.
(iii) Closed hyperbolic manifolds admit no Dupin foliations.

Certainly, one can imagine several di↵erent examples of canal foliations of the
Euclidean 3-space R3 and of the hyperbolic 3-space H3. The most interesting case
is that of closed hyperbolic 3-manifolds. It occurs, that the best way towards this
goal is to find a topological version of the ”canalicity”.

Following [17], we shall say that a griddled structure on a surface L is a 1-
dimensional foliation C (with singularities) such that any singularity of C is isolated
and any regular leaf of C is homeomorphic to S

1. Similarly, a griddled structure on
a foliated 3-manifold (M,F) will be an orientable subfoliation C of the codimension
1 foliation F which induces by restriction a griddled structure on each leaf L of
F . In both cases, we will say that L and (M,F) are griddled.

First, we are going to classify griddled surfaces. To this end, recall that an
action of S1 is called semi-free if any non trivial isotropy subgroup coincides with
S
1. Now a semi-free action of S1 on a surface defines a griddled structure provided

that its singularities are isolated; we call such a structure canonical.

Example 5.3. Natural examples of canonical griddled structures on surfaces are
provided by the following semi-free actions:

(1) the action of the group of rotations around the origin of the plane R2 or the
unit disk D

2; the action of the group of rotations of the unit sphere S2 around

the vertical axis
�!
Oz of R3; these structures have either one or two singularities,

(2) the natural free action of the first factor on the annulus A = S
1⇥ [0, 1], the

cylinders S1⇥R or S1⇥ [0, 1], the torus T2 = S
1⇥S

1, all the four structures being
regular, that is without singularities.

Lemma 5.4. Any singularity of a connected griddled surface (L, C) is a center
and (L, C) is topologically conjugate to one of the canonical griddled surfaces of
Example 5.3.

The above lemma together with several technical steps allows to classify grid-
dled foliated 3-manifolds (either with boundary or without):

Theorem 5.5 ([17]). A compact 3-manifold M supports a griddled foliation if
and only if M is one of the following manifolds:

i) D2 ⇥ [0, 1], D2 ⇥ S1, S2 ⇥ [0, 1] or T 2 ⇥ [0, 1] if @M 6= ;,
ii) S2 ⇥ S1, T 3 or an S1-bundle over T 2 if @M = ;.
Certainly, canal surfaces and many canal foliations are griddled with the grid-

dled structure consisting of all the characteristic circles of the surface/leaves.



286 P. WALCZAK

However, the standard Reeb foliation on S
3 is not griddled: the griddled struc-

tures of the two Reeb components induce two transverse griddlings of the toral
leaf. This is why we need to accept the following definitions:

Consider a finite family D = {L1, L2, . . . , Lk} of compact leaves of a codimen-
sion 1 compact foliated manifold (M,F). Cutting M along these leaves, we pro-
duce a finite family {N1, N2, . . . , Nl} of compact foliated manifolds and a foliation
preserving submersive map

 :
a

j

Nj !M.

The restriction of  either to the interior or to any boundary component of any
Nj is injective. We call  a foliated decomposition of (M,F) defined by D. Now,
we introduce our last concept:

A codimension 1 foliation F on a compact connected 3-manifold M (possibly
with boundary) is a topological canal foliation if there exists a foliated decompo-
sition  :

`
j Nj ! M of (M,F) defined by a finite family D of compact leaves

verifying the following two conditions:

(i) for each j, the foliation Fj induced by F on Nj is tangent to the bound-
ary @Nj , admits a griddled structure Cj and any component of @Nj is
a regularly griddled torus,

(ii) any torus Lj 2 D being the image by  of two boundary components
of

`
j Nj is endowed with two griddled structures which are mutually

transverse.

The elements of D are called the turning leaves of F and the manifolds Nj are
its griddled components.

Theorem 5.6 ([17]). A compact 3-manifold M supports a topological canal foli-
ation if and only if M is one of the following:

(i) D2 ⇥ [0, 1], D2 ⇥ S1, S2 ⇥ [0, 1] or T 2 ⇥ [0, 1] if @M 6= ;,
(ii) S2 ⇥ S1, S3 or any Lens space, T 3 or any S1-bundle over T 2 or any

T 2-bundle over S1 if @M = ;.

None of the manifolds M listed in the theorem above admits a hyperbolic
structure. Indeed, the fundamental group of each of them (and its doubling
M#M in the case @M 6= ;) has the growth of polynomial type while – as shown
in [27] and [33] – the fundamental groups of all closed hyperbolic manifolds have
exponential type of growth. (For more about types of growth, see – for instance
– [35], Chapter 2.) As mentioned before, many geometric canal foliations admit
griddled structures and, in fact, all of them admit structures of topological canal
foliations. Therefore, we can conclude with the following.

Corollary 5.7. Closed hyperbolic 3-manifolds do not admit (neither geometric
nor topological) canal foliations.
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6. Epilogue

Certainly, this article does not exhaust the list of recent result on canals. Here,
we rewiev briefly some of those which were not mentioned in previous sections.

1. In [24], the authors find the minimal value of the length (in de Sitter
space) of closed space-like curves with non-vanishing non-space-like geo-
desic curvature vector. These curves are in correspondence with closed
almost regular canal surfaces, and their length is a natural quantity in
conformal geometry.

2. As shown in Section 2, the space of 2-dimensional spheres in the 3-dimensio-
nal space form has dimension 4. Similarly, the space of Dupin cyclides can
be shown to be of dimension 9. Given two contact conditions, that is two
planes equipped with two points (supposed to be points of tangency), in
general there is no sphere satisfying them (that is, tangent to the planes
at given points). Similarly (see [20, 23] ), given three such tangency con-
ditions, in general there is no Dupin cyclide satisfying them. But, one can
find a codimension-one subspace of triples of contact conditions such that
for any its element there exists a one-parameter family of Dupin cyclides
satisfying the three contacts.

3. In [15], the authors provide an algorithm to compute in de Sitter space
a characteristic circle of a Dupin cyclide given a point and the tangent
line. They provide also iterative algorithms (in the space of spheres) to
compute (in 3D space) some characteristic circles of a Dupin cyclide which
blends two particular canal surfaces. In [14], tools from geometric algebra
are used to study Dupin cyclides.

4. As mentioned in Theorem 5.2, regular foliations by Dupin cyclides do not
exist neither on S

3 nor on closed hyperbolic manifolds. However, singular
Dupin foliations, like that on S

3 ⇢ C
2 by tori |w| = a, |z| = b with a, b > 0

satisfying a2+b2 = 1, may be considered. In [21], the authors constructed
several examples of such foliations on the unite sphere and illustrated them
with very interesting pictures produced by computer-drawing.

Also, cyclides di↵erent than these called Dupin can be considered:
A general cyclide is a closed surface in S

3 which is spanned by two trans-
verse families of circles such that exactly one circle of each family passes
through each point of the surface. Singular foliations by general cyclides
on S

3 are studied in [22].
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