1. bookVolume 65 (2017): Issue 4 (December 2017)
Zeitschriftendaten
License
Format
Zeitschrift
Erstveröffentlichung
28 Mar 2009
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
access type Open Access

Effect of transverse perforations on fluid loading on a long, slender plate at zero incidence

Online veröffentlicht: 07 Nov 2017
Seitenbereich: 378 - 384
Eingereicht: 31 May 2016
Akzeptiert: 01 Nov 2016
Zeitschriftendaten
License
Format
Zeitschrift
Erstveröffentlichung
28 Mar 2009
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch

This paper reports the results of experimental investigations of flow-induced loading on perforated and solid flat plates at zero incidence with respect to the incoming flow. The plates had a streamwise length to transverse thickness ratio of 23.5. The effect of the perforations was investigated for three different perforation diameters. The results corresponding to the perforated plates were compared with the reference case of the solid plate (no perforations) at five inflow velocities. We quantified the effect of the perforations on the unsteady fluid loading on the plate in terms of the variations of the corresponding Strouhal number, the mean drag coefficient and the fluctuating lift coefficient as functions of the Reynolds number and the perforation diameter. The results indicate that the loading was dominated by the dynamics of the wake. In particular, increasing the perforation diameter resulted in a wider wake, corresponding to the increase in mean drag coefficient and the decrease in the Strouhal number. Onset of coupling between the vortex shedding and the transverse oscillations of the plate was manifested as a rapid increase in the fluctuating lift coefficient, as the perforation diameter exceeds the plate thickness.

Bao, Y., Wu, Q., Zhou, D., 2012. Numerical investigation of flow around an inline square cylinder array with different spacing ratios. Comput. Fluids, 55, 118-131. DOI: 10.1016/j.compfluid.2011.11.011.10.1016/j.compfluid.2011.11.011Open DOISearch in Google Scholar

Celik, E., Rockwell, D., 2004. Coupled oscillations of flow along a perforated plate. Phys. Fluids, 16, 1714-1724, DOI: 10.1063/1.1661625.10.1063/1.1661625Open DOISearch in Google Scholar

Ffowcs Williams, J.E., 1972. The acoustics of turbulence near sound-absorbent liners. J. Fluid Mech., 51, 737-749, DOI: 10.1017/S0022112072001338.10.1017/S0022112072001338Open DOISearch in Google Scholar

Guillaume, D.W., LaRue, J.C., 2001. Comparison of the vortex shedding behavior of a single plate and a plate array. Exp. Fluids, 30, 22-26, DOI: 10.1007/s003480000130.10.1007/s003480000130Open DOISearch in Google Scholar

Guillaume, D.W., LaRue, J.C., 2005. Comparing the flow on the bounded and unbounded sides of a plate. Int. J. Heat Mass Tran., 48, 1384-1387. DOI: 10.1016/j.ijheatmasstransfer.2004.10.012.10.1016/j.ijheatmasstransfer.2004.10.012Open DOISearch in Google Scholar

Howe, M.S., 1986. Attenuation of sound due to vortex shedding from a splitter plate in a mean flow duct. J. Sound Vibr., 105, 385-396. DOI: 10.1016/0022-460X(86)90167-7.10.1016/0022-460X(86)90167-7Open DOISearch in Google Scholar

Howe, M.S., 1990. Sound produced by turbulent flow over a perforated inlet. J. Sound Vibr. 139, 227-240. DOI: 10.1016/0022-460x(90)90884-3.10.1016/0022-460x(90)90884-3Open DOISearch in Google Scholar

Howe, M.S., 1997a. Sound generated by turbulence and discrete vortices interacting with a perforated elastic plate in low-Machnumber flow. Q. J. Mech. App. Math., 50, 279-301. DOI: 10.1093/qjmam/50.2.279.10.1093/qjmam/50.2.279Open DOISearch in Google Scholar

Howe, M.S., 1997b. Influence of cross-sectional shape on the conductivity of a wall aperture in mean flow. J. Sound Vibr., 207, 601-616. DOI: 10.1006/jsvi.1997.1103.10.1006/jsvi.1997.1103Open DOISearch in Google Scholar

Howe, M.S., 1997c. Edge, cavity and aperture tones at very low Mach numbers. J. Fluid Mech., 330, 61-84. DOI: 10.1017/s0022112096003606.10.1017/s0022112096003606Open DOISearch in Google Scholar

Idelchik, I.E., 1986. Handbook of Hydraulic Resistance. 2nd ed. Hemisphere Publishing Corporation, Washington, DC.Search in Google Scholar

Knisely, C.W., 1990. Strouhal numbers of rectangular cylinders at incidence: A review and new data. J. Fluids Struct., 4, 371-393. DOI: 10.1016/0889-9746(90)90137-t.10.1016/0889-9746(90)90137-tOpen DOISearch in Google Scholar

Malavasi, S., Bossi, F.C., 2012. Experimental analysis of aerodynamic noise generation in a rotary control valve. In: Meskell, C., Bennett, G. (Eds.): Proc. 10th International Conference on Flow-Induced Vibrations & Flow-Induced Noise (FIV2012). Dublin, Ireland, pp. 697-703.Search in Google Scholar

Malavasi, S., Guadagnini, A., 2007. Interactions between a rectangular cylinder and a free-surface flow. J. Fluid Struct., 23, 1137-1148, 10.1016/j.jfluidstructs.2007.04.002.Search in Google Scholar

Malavasi, S., Zappa, E., 2008. Fluid-dynamic forces and wake frequencies on a tilted rectangular cylinder near a solid wall. Meccanica, 44, 91-101. DOI: 10.1007/s11012-008-9154-2.10.1007/s11012-008-9154-2Open DOISearch in Google Scholar

Nakamura, Y., Nakashima, M., 1986. Vortex excitation of prisms with elongated rectangular, H and [vertical, dash] crosssections. J. Fluid Mech., 163, 149-169. DOI: 10.1017/S0022112086002252.10.1017/S0022112086002252Open DOISearch in Google Scholar

Nakamura, Y., Ohya, Y., Tsuruta, H., 1991. Experiments on vortex shedding from flat plates with square leading and trailing edges. J. Fluid Mech., 222, 437-447. DOI: 10.1017/s0022112091001167.10.1017/s0022112091001167Open DOISearch in Google Scholar

Nakamura, Y., Ohya, Y., Ozono, S., Nakayama, R., 1996. Experimental and numerical analysis of vortex shedding from elongated rectangular cylinders at low Reynolds numbers 200-103. J. Wind Eng. Ind. Aerod., 65, 301-308. DOI: 10.1016/s0167-6105(97)00048-2.10.1016/S0167-6105(97)00048-2Open DOISearch in Google Scholar

Naudascher, E., Rockwell, D., 1994. Flow-Induced Vibrations: an Engineering Guide. 2nd ed. A.A. Balkema Publishers, Rotterdam, the Netherlands.Search in Google Scholar

Okajima, A., 1982. Strouhal numbers of rectangular cylinders. J. Fluid Mech., 123, 379-398. DOI: 10.1017/s0022112082003115.10.1017/s0022112082003115Open DOISearch in Google Scholar

Oshkai, P., Velikorodny, A., 2013. Flow-acoustic coupling in coaxial side branch resonators with rectangular splitter plates. J. Fluid Struct., 38, 22-39. DOI: 10.1016/j.jfluidstructs.2012.12.008.10.1016/j.jfluidstructs.2012.12.008Open DOISearch in Google Scholar

Parker, R., 1966. Resonance effects in wake shedding from parallel plates: Some experimental observations. J. Sound Vibr., 4, 62-72. DOI: 10.1016/0022-460x(66)90154-4.10.1016/0022-460X(66)90154-4Open DOISearch in Google Scholar

Parker, R., Welsh, M.C., 1983. Effects of sound on flow separation from blunt flat plates. Int. J. Heat Fluid Flow, 4, 113-127. DOI: 10.1016/0142-727x(83)90014-0. 10.1016/0142-727X(83)90014-0Open DOISearch in Google Scholar

Roshko, A., 1954. On the drag and shedding frequency of twodimensional bluff bodies. In: Aeronautics NACf (Eds.). Washington.Search in Google Scholar

Roshko, A., 1955. On the wake and drag of bluff bodies. J.Aeronaut. Sci., 22, 124-132. DOI: 10.2514/8.3286. 10.2514/8.3286Open DOISearch in Google Scholar

Welsh, M.C., Stokes, A.N., Parker, R., 1984. Flow-resonant sound interaction in a duct containing a plate. 1. Semi-circular leading edge. J. Sound Vibr., 95, 305-323. DOI: 10.1016/0022-460x(84)90670-9.10.1016/0022-460X(84)90670-9Open DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo