1. bookVolume 26 (2018): Issue 2 (December 2018)
Zeitschriftendaten
License
Format
Zeitschrift
Erstveröffentlichung
08 Aug 2013
Erscheinungsweise
2 Hefte pro Jahr
Sprachen
Englisch
access type Open Access

Cinnamyl-Imine-Chitosan Hydrogels. Morphology Control

Online veröffentlicht: 03 Jan 2019
Seitenbereich: 221 - 232
Zeitschriftendaten
License
Format
Zeitschrift
Erstveröffentlichung
08 Aug 2013
Erscheinungsweise
2 Hefte pro Jahr
Sprachen
Englisch

The study deals with the exploration of the possibilities to control the morphology of cinnamyl-imine-chitosan hydrogels in view of their bio-application. Three series of hydrogels were synthetized from chitosan of three different molecular weights and cinnamaldehyde, varying the molar ratio between the amine groups on chitosan and aldehyde functional groups. The hydrogel morphology has been monitored by scanning electron microscopy. The variation of the hydrogel morphology as a function of chitosan molecular weight, crosslinking degree, and incubation conditions has been monitored. It was concluded that there are multiple possibilities of tuning the morphology of these hydrogels in function of the targeted application.

1. Pella, M.C.G.; Lima-Tenorio, M.K.; Tenorio-Neto, E.T.; Guilherme, M.R.; Muniz, E.C.; Rubira, A.F. Chitosan-based hydrogels: From preparation to biomedical applications. Carbohydr. Polym.2018, 196, 233-245.Search in Google Scholar

2. Bugnicourt, L.; Peers, S.; Dalverny, C.; Ladavière, C. Tunable morphology of lipid/chitosan particle assemblies. J. Colloid Interface Sci.2019, 534, 105-109.Search in Google Scholar

3. Chabbi, J.; Jennah, O.; Katir, N.; Lahcini, M.; Bousmina, M.; El Kadib, A. Aldehyde-functionalized chitosan-montmorillonite films as dynamically-assembled, switchable-chemical release bioplastics. Carbohydr. Polym.2018, 183, 287-293.Search in Google Scholar

4. Marin, L.; Ailincai, D.; Mares, M.; Paslaru, E.; Cristea, M.; Nica, V.; Simionescu, B.C. Imino-chitosan biopolymeric films. Obtaining, self-assembling, surface and antimicrobial properties. Carbohydr. Polym.2015, 117, 762-770.Search in Google Scholar

5. Rahimi, S.; Khoee, S.; Ghandi, M. Development of photo and pH dual crosslinked coumarin-containing chitosan nanoparticles for controlled drug release. Carbohydr. Polym.2018, 201, 236-245.Search in Google Scholar

6. Pakdel, P.M.; Peighambardoust, S.J. Review on recent progress in chitosan-based hydrogels for wastewater treatment application. Carbohydr. Polym.2018, 201, 264-279.Search in Google Scholar

7. Beauchamp, R.O.; St Clair, M.B.; Fennell, T.R.; Clarke, D.O.; Morgan, K.T. A critical review of the toxicology of glutaraldehyde. Crit. Rev. Toxicol.1992, 22, 143-174.Search in Google Scholar

8. Marin, L.; Moraru, S.; Popescu, M.C.; Nicolescu, A.; Zgardan, C.; Simionescu, B.C.; Barboiu, M. Out-of-Water Constitutional Self-Organization of Chitosan–Cinnamaldehyde Dynagels. Chem. Eur. J.2014, 20, 4814-4821.Search in Google Scholar

9. Olaru, A.M.; Marin, L.; Morariu, S.; Pricope, G.; Pinteala, M.; Tartau-Mititelu, L. Biocompatible chitosan based hydrogels for potential application in local tumor therapy. Carbohydr. Polym.2018, 179, 59-70.Search in Google Scholar

10. Marin, L.; Ailincai, D.; Morariu, S.; Tartau-Mititelu, L. Development of biocompatible glycodynameric hydrogels joining two natural motifs by dynamic constitutional chemistry. Carbohydr. Polym.2017, 170, 60-71.Search in Google Scholar

11. Iftime, M.; Morariu, S.; Marin, L. Salicyl-imine-chitosan hydrogels: Supramolecular architecturing as acrosslinking method toward multifunctional hydrogels. Carbohydr. Polym.2017, 165, 39-50.Search in Google Scholar

12. Ailincai, D.; Marin, L.; Morariu, S.; Mares, M.; Bostanaru, A.C.; Pinteala, M.; Simionescu, B.C.; Barboiu, M. Dual crosslinked iminoboronate-chitosan hydrogels with strongantifungal activity against Candida planktonic yeasts and biofilms. Carbohydr. Polym.2016, 152, 306-316.Search in Google Scholar

13. Bejan, A.; Ailincai, D.; Simionescu, B.C.; Marin, L. Chitosan Hydrogelation with a Phenothiazine based Aldehyde – a Synthetic Approach toward Highly Luminescent Biomaterials. Polym. Chem.2018, 9, 2359-2369.Search in Google Scholar

14. Iftime, M.M.; Marin, L. Chiral betulin-imino-chitosan hydrogels by dynamic covalent sonochemistry. Ultrason. Sonochem.2018, 45, 238-247.Search in Google Scholar

15. Ailincai, D.; Mititelu Tartau, L.; Marin, L. Drug delivery systems based on biocompatible imino-chitosan hydrogels for local anticancer therapy. Drug Deliv.2018, 25, 1080-1090.Search in Google Scholar

16. Hamedi, H.; Moradi, S.; Hudson, S.M.; Tonelli, A.E. Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review. Carbohydr. Polym.2018, 199, 445-460.Search in Google Scholar

17. Miras, J.; Vílchez, S.; Solans, C.; Esquena, J. Chitosan macroporous foams obtained in highly concentrated emulsions as templates, J. Colloid Interface Sci.2013, 410, 33-42.Search in Google Scholar

18. Rotaru, A.; Cojocaru, C.; Cretescu, I.; Pinteala, M.; Timpu, D.; Sacarescu, L.; Harabagiu, V. Performances of clay aerogel polymer composites for oil spill sorption: Experimental design and modelling. Sep. Purif. Technol.2014, 133, 260-275.Search in Google Scholar

19. Chen, Y.; Ma, P.; Gui, S. Cubic and Hexagonal Liquid Crystals as Drug Delivery Systems, BioMed Res. Int.2014, Article ID 815981, 12 pages.Search in Google Scholar

20. Loh, Q.L.; Choong, C. Three-dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size. Tissue Eng. Part B Rev.2013, 19, 485–502.Search in Google Scholar

21. Annabi, N.; Nichol, J.W.; Zhong, X.; Ji, C.; Koshy, S.; Khademhosseini, A.; Dehghani, F. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng. Part B Rev.2010, 16, 371-383.Search in Google Scholar

22. Marin, L.; Popescu, M.C.; Zabulica, A.; Uji, H.; Fron, E. Chitosan as matrix for bio-polymer dispersed liquid crystal systems. Carbohydr. Polym.2013, 95, 16-24.Search in Google Scholar

23. Fifere, A.; Marangoci, N.; Maier, S.; Coroaba, A.; Maftei, D.; Pinteala, M. Theoretical study on β-cyclodextrin inclusion complexes with propiconazole and protonated propiconazole. Beilstein J. Org. Chem.2012, 8, 2191-2201.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo