1. bookAHEAD OF PRINT
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2300-8733
Erstveröffentlichung
25 Nov 2011
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
access type Uneingeschränkter Zugang

Evaluation of the tRNA-Leu (UUR) gene haplotype profile observed in canine mammary gland tumours based on comparative analysis with the MT-TL1 human gene

Online veröffentlicht: 09 Mar 2022
Volumen & Heft: AHEAD OF PRINT
Seitenbereich: -
Eingereicht: 11 Jun 2021
Akzeptiert: 13 Dec 2021
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2300-8733
Erstveröffentlichung
25 Nov 2011
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Abstract

The aetiology and pathogenesis of many canine tumours are likely to be similar to cancers found in humans. This study aimed to evaluate a plausible link between changes in the tRNA-Leu (UUR) gene and the carcinogenesis process in dogs with mammary gland tumours. The whole mitochondrial DNA (mtDNA) isolated from blood and tumour tissues of 13 dogs with malignant mammary gland tumours was sequenced. The present work is the first report showing that some polymorphisms might occur at the corresponding positions in the human and canine mtDNA genome, which in turn may provoke similar deleterious effects. The homology between the human MT-TL1 and canine tRNA-Leu (UUR) genes was 84%. After resequencing of the whole mitochondrial DNA genome with the use of the NGS technology, two polymorphisms in two haplotypes were identified: m.2683G>A (observed in 18 out of 27 samples) and m.2678_2679insG (27 out of 27 samples). The m.2683G>A polymorphism corresponded to a deleterious change at m.3243A>G, which is linked with MELAS (Mitochondrial Encephalomyopathy, Lactic Acidosis, Stroke-like episodes) syndrome and with different types of cancers in humans as well. The comparative analysis of MT-TL1 and tRNA-Leu (UUR) led us to hypothesise that the m.2678_2679insG and m.2683G>A polymorphisms might influence the dog’s condition and might be linked with tumourigenesis, as observed in humans.

Brandon M., Baldi P., Wallace D.C. (2006). Mitochondrial mutations in cancer. Oncogene, 25: 4647–4662. Search in Google Scholar

Brown T.P., Ganapathy V. (2020). Lactate/GPR81 signaling and proton motive force in cancer: Role in angiogenesis, immune escape, nutrition, and Warburg phenomenon. Pharmacol. Ther., 206: 107451. Search in Google Scholar

Bulduk B.K., Kiliç H.B., Bekircan-Kurt C.E., Haliloǧlu G., Erdem Özdamar S., Topaloǧlu H., Kocaefe Y.Ç. (2020). A novel amplification-refractory mutation system-PCR strategy to screen MT-TL1 pathogenic variants in patient repositories. Gen. Test. Mol. Biomark., 24: 165–170. Search in Google Scholar

Chen S., Zhou Y., Chen Y., Gu J. (2018). Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34: i884–i890. Search in Google Scholar

Christianson T.W., Clayton D.A. (1986). In vitro transcription of human mitochondrial DNA: Accurate termination requires a region of DNA sequence that can function bidirectionally. Proc. Nat. Acad. Sci. USA, 83: 6277–6281. Search in Google Scholar

Christianson T.W., Clayton D.A. (1988). A tridecamer DNA sequence supports human mitochondrial RNA 3’-end formation in vitro. Mol. Cell. Biol., 8: 4502–4509. Search in Google Scholar

Cullen J.M., Page R., Misdorp W. (2008). An overview of cancer pathogenesis, diagnosis, and management. Tum. Domest. Anim., Iowa State Press, Ames, Iowa, USA, pp. 1–44. Search in Google Scholar

D’Souza A.R., Minczuk M. (2018). Mitochondrial transcription and translation: Overview. Essays Biochem., 62: 309–320. Search in Google Scholar

den Dunnen J.T., Dalgleish R., Maglott D.R., Hart R.K., Greenblatt M.S., Mcgowan-Jordan J., Roux A.F., Smith T., Antonarakis S.E., Taschner P.E.M. (2016). HGVS Recommendations for the description of sequence variants: 2016 Update. Human Mut., 37: 564–569. Search in Google Scholar

Dobson J.M. (2013). Breed-predispositions to cancer in pedigree dogs. ISRN Vet. Sci., 2013: 941275. Search in Google Scholar

El-Hattab A.W., Adesina A.M., Jones J., Scaglia F. (2015). MELAS syndrome: Clinical manifestations, pathogenesis, and treatment options. Mol. Genet. Metab., 116: 4–12. Search in Google Scholar

Fernández-Silva P., Enriquez J.A., Montoya J. (2003). Replication and transcription of mammalian mitochondrial DNA. Exp. Physiol., 88: 41–56. Search in Google Scholar

Goldschmidt M.H., Peña L., Rasotto R., Zappulli V. (2011). Classification and grading of canine mammary tumors. Vet. Pathol., 48: 117–131. Search in Google Scholar

Grzybowska-Szatkowska L., Slaska B. (2012). Polymorphisms in genes encoding mt-tRNA in female breast cancer in Poland. Mitochondrial DNA, 23: 106–111. Search in Google Scholar

Grzybowska-Szatkowska L., Ślaska B. (2014). Mitochondrial NADH dehydrogenase polymorphisms are associated with breast cancer in Poland. J. Appl. Genet, 55: 173–181. Search in Google Scholar

Hebert P.D.N., Dewaard J.R., Landry J.F. (2010). DNA barcodes for 1/1000 of the animal Kingdom. Biol. Lett., 6: 359–362. Search in Google Scholar

Helm M., Brulé H., Friede D., Giegé R., Pütz D., Florentz C. (2000). Search for characteristic structural features of mammalian mitochondrial tRNAs. RNA, 6: 1356–1379. Search in Google Scholar

Hyvärinen A.K., Pohjoismäki J.L.O., Reyes A., Wanrooij S., Yasukawa T., Karhunen P.J., Spelbrink J.N., Holt I.J., Jacobs H.T. (2007). The mitochondrial transcription termination factor mTERF modulates replication pausing in human mitochondrial DNA. Nuc. Acids Res., 35: 6458–6474. Search in Google Scholar

Imes D.L., Wictum E.J., Allard M.W., Sacks B.N. (2012). Identification of single nucleotide polymorphisms within the mtDNA genome of the domestic dog to discriminate individuals with common HVI haplotypes. Foren. Sci. Int. Genet., 6: 630–639. Search in Google Scholar

Kim K.S., Lee S.E., Jeong H.W., Ha J.H. (1998). The complete nucleotide sequence of the domestic dog (Canis familiaris) mitochondrial genome. Mol. Phylogenet. Evol., 10: 210–220. Search in Google Scholar

Kowal K., Ślaska B., Bownik A., Horecka B., Gawor J., Śmiech A., Tkaczyk A. (2019). Analysis of Mitochondrial genome from labrador (Canis lupus familiaris) with mammary gland tumour reveals novel mutations and polymorphisms. Ann. Anim. Sci., 19: 619–632. Search in Google Scholar

Kowal K., Tkaczyk A., Pierzchała M., Bownik A., Ślaska B. (2020). Identification of mitochondrial DNA (NUMTs) in the nuclear genome of Daphnia Magna. Int. J. Mol. Sci., 21.10.3390/ijms21228725769918433218217 Search in Google Scholar

Kruse B., Narasimhan N., Attardi G. (1989). Termination of transcription in human mitochondria: Identification and purification of a DNA binding protein factor that promotes termination. Cell, 58: 391–397. Search in Google Scholar

Larman T.C., DePalma S.R., Hadjipanayis A.G., Protopopov A., Zhang J., Gabriel S.B., Chin L., Seidman C.E., Kucherlapati R., Seidman J.G. (2012). Spectrum of somatic mitochondrial mutations in five cancers. Proc. National Academy of Sciences of the United States of America, 109: 14087–14091. Search in Google Scholar

Lorenc A., Bryk J., Golik P., Kupryjańczyk J., Ostrowski J., Pronicki M., Semczuk A., Szołkowska M., Bartnik E. (2003). Homosplasmic MELAS A3243G mtDNA mutation in a colon cancer sample. Mitochondrion, 3: 119–124. Search in Google Scholar

Lott M.T., Leipzig J.N., Derbeneva O., Michael Xie H., Chalkia D., Sarmady M., Procaccio V., Wallace D.C. (2013). MtDNA variation and analysis using Mitomap and Mitomaster. Curr. Prot. Bioinf., 44.10.1002/0471250953.bi0123s44425760425489354 Search in Google Scholar

Lowe T.M., Chan P.P. (2016). tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleid Acids Res., 44: W54–W57. Search in Google Scholar

Martin M., Cho J., Cesare A.J., Griffith J.D., Attardi G. (2005). Termination factor-mediated DNA loop between termination and initiation sites drives mitochondrial rRNA synthesis. Cell, 123: 1227–1240. Search in Google Scholar

Mayr J.A., Meierhofer D., Zimmermann F., Feichtinger R., Kögler C., Ratschek M., Schmeller N., Sperl W., Kofler B. (2008). Loss of complex I due to mitochondrial DNA mutations in renal oncocytoma. Clin. Canc. Res., 14: 2270–2275. Search in Google Scholar

Meierhofer D., Mayr J.A., Fink K., Schmeller N., Kofler B., Sperl W. (2006). Mitochondrial DNA mutations in renal cell carcinomas revealed no general impact on energy metabolism. Brit. J. Cancer, 94: 268–274. Search in Google Scholar

Moraes C.T., Ciacci F., Bonilla E., Jansen C., Hirano M., Rao N., Lovelace R.E., Rowland L.P., Schon E.A., DiMauro S. (1993). Two novel pathogenic mitochondrial DNA mutations affecting organelle number and protein synthesis: Is the tRNALeu(UUR) gene an etiologic hot spot? J. Clin. Invest., 92: 2906–2915. Search in Google Scholar

Okonechnikov K., Golosova O., Fursov M., Varlamov A., Vaskin Y., Efremov I., German Grehov O.G., Kandrov D., Rasputin K., Syabro M., Tleukenov T. (2012). Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics, 28: 1166–1167. Search in Google Scholar

Pereira L., Van Asch B., Amorim A. (2004). Standardisation of nomenclature for dog mtDNA D-loop: A prerequisite for launching a Canis familiaris database. Forensic Sci. Int., 141: 99–108. Search in Google Scholar

Queen R.A., Steyn J.S., Lord P., Elson J.L. (2017). Mitochondrial DNA sequence context in the penetrance of mitochondrial t-RNA mutations: A study across multiple lineages with diagnostic implications. PLoS ONE., 12.10.1371/journal.pone.0187862569786229161289 Search in Google Scholar

Rahman S., Hanna M.G. (2009). Diagnosis and therapy in neuromuscular disorders: Diagnosis and new treatments in mitochondrial diseases. J. Neurol. Neurosur. Psych., 80.10.1136/jnnp.2008.15827919684231 Search in Google Scholar

Singh B., Modica-Napolitano J.S., Singh K.K. (2017 a). Defining the momiome: Promiscuous information transfer by mobile mitochondria and the mitochondrial genome. Semin. Cancer Biol., 47: 1–17.10.1016/j.semcancer.2017.05.004568189328502611 Search in Google Scholar

Singh K.K., Modica-Napolitano J.S. (2017 b). Special issue: Mitochondria in cancer. Semin. Cancer Biol., 47: 4–6.10.1016/j.semcancer.2017.10.01329157537 Search in Google Scholar

Singh K.K., Choudhury A.R., Tiwari H.K. (2017 c). Numtogenesis as a mechanism for development of cancer. Semin. Cancer Biol., 47: 101–109.10.1016/j.semcancer.2017.05.003568394728511886 Search in Google Scholar

Slaska B., Surdyka M., Brodzki A., Nisztuk S., Gurgul A., Bugno-Poniewierska M., Miech A., Roanska D., Orzelski M. (2014 a). Mitochondrial D-loop mutations can be detected in sporadic malignant tumours in dogs. Bull. Vet. Inst. Pulawy, 58: 631–637.10.2478/bvip-2014-0096 Search in Google Scholar

Slaska B., Grzybowska-Szatkowska L., Surdyka M., Nisztuk S., Rozanska D., Rozanski P., Smiech A., Orzelski M. (2014 b). Mitochondrial D-loop mutations and polymorphisms are connected with canine malignant cancers. Mitochond. DNA, 25: 238–243.10.3109/19401736.2013.79205423656294 Search in Google Scholar

Ślaska B., Grzybowska-Szatkowska L., Bugno-Poniewierska M., Surdyka M., Śmiech A. (2013). Nuclear and mitochondrial DNA mutation in human and canine tumors. Med. Weter., 69: 195–202. Search in Google Scholar

Stacey S.N., Manolescu A., Sulem P., Rafnar T., Gudmundsson J., Gudjonsson S.A., Masson G., Jakobsdottir M., Thorlacius S., Helgason A., Aben K.K., Strobbe L.J., Albers-Akkers M.T., Swinkels D.W., Henderson B.E., Kolonel L.N., Le Marchand L., Millastre E., Andres R., et al. (2007). Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer. Nat. Genet., 39: 865–869. Search in Google Scholar

Sun S., Wu C., Yang C., Chen J., Wang X., Nan Y., Huang Z., Ma L. (2019). Prognostic roles of mitochondrial transcription termination factors in non-small cell lung cancer. Oncol. Lett., 18: 3453–3462. Search in Google Scholar

Surdyka M., Slaska B. (2017). Defect of the mitochondrial DNA hypervariable region as a risk factor for canine mammary tumour. Vet. Comp. Oncol., 15: 820–828. Search in Google Scholar

Tkaczyk A., Kowal K., Ślaska B. (2020). Mitochondrial D-loop informative SNPs in identification of dog’s breed. Med. Weter., 76: 6394–2020. Search in Google Scholar

Wallace D.C. (2012). Mitochondria and cancer. Nat. Rev. Cancer, 12: 685–698. Search in Google Scholar

Wallace K.B. (2014). Drug-induced mitochondrial neuropathy in children: A conceptual framework for critical windows of development. J. Child Neurol. SAGE Publ. Inc., 29: 1241–1248. Search in Google Scholar

Wheeler J.H., Young C.K.J., Young M.J. (2019). Analysis of human mitochondrial DNA content by southern blotting and nonradioactive probe hybridization. Curr. Prot. Toxicol., 80.10.1002/cptx.75658160630982231 Search in Google Scholar

Xu B., Reznik E., Tuttle R.M., Knauf J., Fagin J.A., Katabi N., Dogan S., Aleynick N., Seshan V., Middha S., Enepekides D., Casadei G.P., Solaroli E., Tallini G., Ghossein R., Ganly I. (2019). Outcome and molecular characteristics of non-invasive encapsulated follicular variant of papillary thyroid carcinoma with oncocytic features. Endocrine, 64: 97–108. Search in Google Scholar

Young M.J., Copeland W.C. (2016). Human mitochondrial DNA replication machinery and disease. Curr. Opin. Genet. Dev., 38: 52–62. Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo