1. bookAHEAD OF PRINT
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2300-8733
Erstveröffentlichung
25 Nov 2011
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
access type Uneingeschränkter Zugang

Embryo production by in vitro fertilization in wild ungulates: progress and perspectives

Online veröffentlicht: 09 Mar 2022
Volumen & Heft: AHEAD OF PRINT
Seitenbereich: -
Eingereicht: 24 Aug 2021
Akzeptiert: 04 Jan 2022
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2300-8733
Erstveröffentlichung
25 Nov 2011
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Abstract

Wild ungulates are of fundamental importance for balancing ecosystems, as well as being the species of economic interest. Increasing concern over the accelerated population reduction of these species has resulted in the development of assisted reproduction techniques, such as in vitro fertilization (IVF), as a tool for conservation and multiplication. In the present scenario, IVF protocols were developed based on the methodologies used for domestic ungulates. Nevertheless, owing to the physiological and reproductive differences among the species, several factors associated with IVF and its relationship with the characteristics of the species of interest require clarification. In vitro conditions for the collection and selection of female and male gametes, oocyte maturation, sperm capacitation, co-incubation of gametes, and embryonic development can influence IVF results. Therefore, the present review considers the main advances in the methodologies already used for wild ungulates, emphasizing the strategies for improving the protocols to obtain better efficiency rates. Additionally, we discuss the conditions of each IVF stage, with emphasis on aspects related to in vitro manipulation and comparability with the protocols for domestic ungulates.

Andrabi S.M.H., Maxwell W.M.C. (2007). A review on reproductive biotechnologies for conservation of endangered mammalian species. Anim. Reprod. Sci., 99: 223–243. Search in Google Scholar

Benham H.M., McCollum M.P., Nol P., Frey R.K., Clarke P.R., Rhyan J.C., Barfield J.P. (2021). Production of embryos and a live offspring using post-mortem reproductive material from bison (Bison bison bison) originating in Yellowstone National Park, USA. Theriogenology, 160: 33–39. Search in Google Scholar

Berg D.K., Asher G.W. (2003). New developments reproductive technologies in deer. Theriogenology, 59: 189–205. Search in Google Scholar

Berg D.K., Thompson J.G., Asher G.W. (2002). Development of in vitro embryo production systems for red deer (Cervus elaphus): part 2. The timing of in vitro nuclear oocyte maturation. Anim. Reprod. Sci., 70: 77–84. Search in Google Scholar

Berlinguer F., González R., Succu S., Del Olmo A., Garde J.J., Espeso G., Gomendio M., Ledda S., Roldan E.R. (2008). In vitro oocyte maturation, fertilization and culture after ovum pick– up in an endangered gazelle (Gazella dama mhorr). Theriogenology, 69: 349–359. Search in Google Scholar

Borges A.A., Santos M.V.O., Queiroz Neta L.B., Oliveira M.F., Silva A.R., Pereira A.F. (2018). In vitro maturation of collared peccary (Pecari tajacu) oocytes after different incubation times. Pesq. Vet. Bras., 38: 1863–1868. Search in Google Scholar

Borges A.A., Santos M.V.O., Nascimento L.E., Lira G.P.O., Praxedes É.A., Oliveira M.F., Silva A.R., Pereira A.F. (2020). Production of collared peccary (Pecari tajacu Linnaeus, 1758) parthenogenic embryos following different oocyte chemical activation and in vitro maturation conditions. Theriogenology, 142: 320–327. Search in Google Scholar

Brackett B.G., Oliphant G. (1975). Capacitation of rabbit spermatozoa in vitro. Biol. Reprod., 12: 260–274. Search in Google Scholar

Brahmasani S.R., Yelisetti U.M., Katari V., Komjeti S., Lakshmikantan U., Pawar R.M., Sisinthy S. (2013). Developmental ability after parthenogenetic activation of in vitro matured oocytes collected postmortem from deers. Small Rumin. Res., 113: 128–135. Search in Google Scholar

Cervantes M.P., Palomino J.M., Anzar M., Mapletoft R.J., Adams G.P. (2016). In vivo and in vitro maturation of oocytes collected from superstimulated wood bison (Bison bison athabascae) during the anovulatory and ovulatory seasons. Anim. Reprod. Sci., 173: 87–96. Search in Google Scholar

Cervantes M.P., Palomino J.M., Anzar M., Mapletoft R.J., Mastromonaco G.F., Adams G.P. (2017). In vitro–production of embryos using immature oocytes collected transvaginally from superstimulated wood bison (Bison bison athabascae). Theriogenology, 92: 103–110. Search in Google Scholar

Chatiza F.P., Bartels P., Nedambale T.L., Wagenaar G.M. (2013). Sperm–egg interaction and functional assessment of springbok, impala and blesbok cauda epididymal spermatozoa using a domestic cattle in vitro fertilization system. Anim. Reprod. Sci., 143: 8–18. Search in Google Scholar

Chaves M.G., Miragaya M.H., Capdevielle E.F., Rutter B., Giuliano S.M., Agüero A. (2004). In vitro maturation of vicuna oocytes recovered by surgical aspiration of follicles from superstimulated ovaries. Biocell, 28: 545. Search in Google Scholar

Comizzoli P., Mermillod P., Mauget R. (2000). Reproductive biotechnologies for endangered mammalian species. Reprod. Nutr. Dev., 40: 493–504. Search in Google Scholar

Comizzoli P., Mermillod P., Cognie Y., Chai N., Legendre X., Mauget R. (2001 a). Successful in vitro production of embryos in the red deer (Cervus elaphus) and the sika deer (Cervus nippon). Theriogenology, 55: 649–659.10.1016/S0093-691X(01)00433-2 Search in Google Scholar

Comizzoli P., Mauget R., Mermillod P. (2001 b). Assessment of in vitro fertility of deer spermatozoa by heterologous IVF with zona-free bovine oocytes. Theriogenology, 56: 261–274.10.1016/S0093-691X(01)00561-1 Search in Google Scholar

Fernández S., Sestelo A., Rivolta M., Córdoba M. (2013). Capacitation and acrosome reaction induction on thawed Dama dama deer spermatozoa: glycine effect as cryopreservation diluent supplement. Zool. Sci., 30: 1110–1116. Search in Google Scholar

Flores-Foxworth G., Coonrod S.A., Moreno J.F., Byrd S.R., Kraemer D.C., Westhusin M. (1995). Interspecific transfer of IVM IVF-derived red sheep (Ovis orientalis gmelini) embryos to domestic sheep (Ovis aries). Theriogenology, 44: 681–690. Search in Google Scholar

Gabryś J., Kij B., Kochan J., Bugno-Poniewierska M. (2021). Interspecific hybrids of animals-in nature, breeding and science – a review. Ann. Anim. Sci., 21: 403–415. Search in Google Scholar

Gambini A., Duque Rodríguez M., Rodríguez M.B., Briski O., Flores Bragulat A.P., Demergassi N., Losinno L., Salamone D.F. (2020). Horse ooplasm supports in vitro preimplantation development of zebra ICSI and SCNT embryos without compromising YAP1 and SOX2 expression pattern. Plos One, 15: e0238948. Search in Google Scholar

García-Álvarez O., Maroto-Morales A., Berlinguer F., Fernández-Santos M.D.R., Esteso M.C., Mermillod P., Ortiz J.A., Ramon M., Pérez-Guzmán M.D., Garde J.J., Soler A.J. (2011). Effect of storage temperature during transport of ovaries on in vitro embryo production in Iberian red deer (Cervus elaphus hispanicus). Theriogenology, 75: 65–72. Search in Google Scholar

García-Álvarez O., Soler A., Maulen Z., Maroto-Morales A., Iniesta-Cuerda M., Martín-Maestro A., Fernández-Santos M.R., Garde J. (2016). Selection of red deer spermatozoa with different cryoresistance using density gradients. Reprod. Domest. Anim., 51: 895–900. Search in Google Scholar

Gordon I.J., Hester A.J., Festa-Bianchet M. (2004). The management of wild large herbivores to meet economic, conservation and environmental objectives. Reprod. Domest. Anim., 41: 1021–1031. Search in Google Scholar

Hermes R., Göritz F., Portas T.J., Bryant B.R., Kelly J.M., Maclellan L.J., Keeley T., Schwarzenberger F., Walzer C., Schnorrenberg A., Spindler R.E., Saragusty J., Kaandorp S., Hildebrandt T.B. (2009). Ovarian superstimulation, transrectal ultrasound–guided oocyte recovery, and IVF in rhinoceros. Theriogenology, 72: 959–968. Search in Google Scholar

Herrick J.R. (2019). Assisted reproductive technologies for endangered species conservation: developing sophisticated protocols with limited access to animals with unique reproductive mechanisms. Biol. Reprod., 100: 1158–1170. Search in Google Scholar

Hildebrandt T.B., Hermes R., Colleoni S., Diecke S., Holtze S., Renfree M.B., Stejskal J., Hayashi K., Drukker M., Loi P., Göritz F., Lazzari G., Galli C. (2018). Embryos and embryonic stem cells from the white rhinoceros. Nat. Commun., 9: 1–9. Search in Google Scholar

Hinrichs K., Love C.C., Brinsko S.P., Choi Y.H., Varner D.D. (2002). In vitro fertilization of in vitro-matured equine oocytes: effect of maturation medium, duration of maturation, and sperm calcium ionophore treatment, and comparison with rates of fertilization in vivo after oviductal transfer. Biol. Reprod., 67: 256–262. Search in Google Scholar

IUCN – International Union for Conservation of Nature and Natural Resources (homepage on the Internet). Red list of threatened species (cited 2021 March 01). Available from: http://www.iucnredlist.org/details/41777/0. Search in Google Scholar

Johnston L.A., Parrish J.J., Monson R., Leibfried-Rutledge L., Susko-Parrish J.L., Northey D.L., Rutledge J.J., Simmons L.G. (1994). Oocyte maturation, fertilization and embryo development in vitro and in vivo in the gaur (Bos gaurus). Reproduction, 100: 131–136. Search in Google Scholar

Kaneko T., Ito H., Sakamoto H., Onuma M., Inoue-Murayama M. (2014). Sperm preservation by freeze–drying for the conservation of wild animals. PloS One, 9: e113381. Search in Google Scholar

Krishnakumar S., Whiteside D.P., Elkin B., Thundathil J.C. (2015). Effect of reproductive seasonality on gamete quality in the North American bison (Bison bison bison). Reprod. Domest. Anim., 50: 206–213. Search in Google Scholar

Leemans B., Stout T.A., Schauwer C., Heras S., Nelis H., Hoogewijs M., Soom A.V., Gadella B.M. (2019). Update on mammalian sperm capacitation: how much does the horse differ from other species? Reproduction, 157: 181–197.10.1530/REP-18-054130721132 Search in Google Scholar

Li Z., Song X., Yin S., Yan J., Lv P., Shan H., Cui K., Liu H., Liu Q. (2021). Single-Cell RNA-seq revealed the gene expression pattern during the in vitro maturation of donkey oocytes. Genes, 12: 1–15. Search in Google Scholar

Liu B., Cui Y., Yu S. (2013). Effect of swim-up and percoll treatment on sperm quality and in vitro embryo development in yak. J. Integr. Agric., 12: 2235–2242. Search in Google Scholar

Locatelli Y., Cognié Y., Vallet J.C., Baril G., Verdier M., Poulin N., Legendre X., Mermillod P. (2005). Successful use of oviduct epithelial cell coculture for in vitro production of viable red deer (Cervus elaphus) embryos. Theriogenology, 64: 1729–1739. Search in Google Scholar

Locatelli Y., Hendriks A., Vallet J.C., Baril G., Duffard N., Bon N., Ortiz K., Scala C., Maurel M-C., Mermillod P., Legendre X. (2012). Assessment LOPU–IVF in Japanese sika deer (Cervus nippon nippon) and application to Vietnamese sika deer (Cervus nippon pseudaxis) a related subspecies threatened with extinction. Theriogenology, 78: 2039–2049. Search in Google Scholar

Macías-García B., González-Fernández L., Matilla E., Hernández N., Mijares J., Sánchez-Margallo F.M. (2018). Oocyte holding in the Iberian red deer (Cervus elaphus hispanicus): Effect of initial oocyte quality and epidermal growth factor addition on in vitro maturation. Reprod. Domest. Anim., 53: 243–248. Search in Google Scholar

Mahesh Y.U., Rao B.S., Suman K., Lakshmikantan U., Charan K.V., Gibence H.R.W., Shivaji S. (2011). In vitro maturation and fertilization in the nilgai (Boselaphus tragocamelus) using oocytes and spermatozoa recovered post-mortem from animals that had died because of foot and mouth disease outbreak. Reprod. Domest. Anim., 46: 832–839. Search in Google Scholar

Malakoutikhah S., Fakheran S., Hemami M.R., Tarkesh M., Senn J. (2020). Assessing future distribution, suitability of corridors and efficiency of protected areas to conserve vulnerable ungulates under climate change. Divers. Distrib., 26: 1383–1396. Search in Google Scholar

Mastromonaco G.F., Songsasen N. (2020). Reproductive technologies for the conservation of wildlife and endangered species. In: Reproductive technologies in animals, Presicce G.A. (ed.). Academic Press, Rome, Italy, pp. 99–117.10.1016/B978-0-12-817107-3.00007-2 Search in Google Scholar

Meintjes M., Bezuidenhout C., Bartels P., Visser D.S., Meintjes J., Loskutoff N.M., Fourie F. L., Barry D.M., Godke R.A. (1997). In vitro maturation and fertilization of oocytes recovered from free–ranging Burchell’s zebra (Equus burchelli) and Hartmann’s zebra (Equus zebra hartmannae). J. Zoo Wildl. Med., 28: 251–259. Search in Google Scholar

Mohr D., Cohnstaedt L.W., Topp W. (2005). Wild boar and red deer affect soil nutrients and soil biota in steep oak stands of the Eifel. Soil Biol. Biochem., 37: 693–700. Search in Google Scholar

O’Brien J.K., Roth T.L. (2000). Functional capacity and fertilizing longevity of frozen–thawed scimitar–horned oryx (Oryx dammah) spermatozoa in a heterologous in vitro fertilization system. Reprod. Fertil. Dev., 12: 413–421. Search in Google Scholar

Owiny O.D., Barry D.M., Agaba M., Godke R.A. (2009). In vitro production of cattle×buffalo hybrid embryos using cattle oocytes and African buffalo (Syncerus caffer caffer) epididymal sperm. Theriogenology, 71: 884–894. Search in Google Scholar

Palomino J.M., Mastromonaco G.F., Cervantes M.P., Mapletoft R.J., Anzar M., Adams G.P. (2020). Effect of season and superstimulatory treatment on in vivo and in vitro embryo production in wood bison (Bison bison athabascae). Reprod. Domest. Anim., 55: 54–63. Search in Google Scholar

Parrish J.J., Susko-Parrish J., Winer M.A., First N.L. (1988). Capacitation of bovine sperm by heparin. Biol. Reprod., 38: 1171–1180. Search in Google Scholar

Piliszek A., Madeja Z.E. (2018). Pre-implantation development of domestic animals. Curr. Top. Dev. Biol., 128: 267–294. Search in Google Scholar

Pradieé J., Sánchez-Calabuig M.J., Castaño C., O’Brien E., Esteso M.C., Beltrán-Breña P., Maillo V., Santiago-Moreno J., Rizos D. (2018). Fertilizing capacity of vitrified epididymal sperm from Iberian ibex (Capra pyrenaica). Theriogenology, 108, 314–320.10.1016/j.theriogenology.2017.11.02129288975 Search in Google Scholar

Ptak G., Clinton M., Barboni B., Muzzeddu M., Cappai P., Tischner M., Loi P. (2002). Preservation of the wild European mouflon: the first example of genetic management using a complete program of reproductive biotechnologies. Biol. Reprod., 66: 796–801. Search in Google Scholar

Pukazhenthi B.S. (2016). Saving wild ungulate diversity through enhanced management and sperm cryopreservation. Reprod. Fertil. Dev., 28: 1133–1144. Search in Google Scholar

Rao B.S., Mahesh,Y.U., Lakshmikantan U.R., Suman K., Charan K.V., Shivaji S. (2010). Developmental competence of oocytes recovered from postmortem ovaries of the endangered Indian blackbuck (Antilope cervicapra). J. Reprod. Dev., 56: 623–629. Search in Google Scholar

Rath D., Long C.R., Dobrinsky J.R., Welch G.R., Schreier L.L., Johnson L.A. (1999). In vitro production of sexed embryos for gender preselection: high-speed sorting of X-chromosome-bearing sperm to produce pigs after embryo transfer. J. Anim. Sci., 77: 3346–3352. Search in Google Scholar

Ratto M., Gomez C., Berland M., Adams G.P. (2007). Effect of ovarian superstimulation on COC collection and maturation in alpacas. Anim. Reprod. Sci., 97: 246–256. Search in Google Scholar

Rizos D., Ward F., Duffy P.A.T., Boland M.P., Lonergan P. (2002). Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality. Mol. Reprod. Dev., 61: 234–248. Search in Google Scholar

Rola L.D., Zanetti E.S., Del Collado M., Peroni E.D.F.C., Duarte J.M.B. (2021). Collection and in vitro maturation of Mazama gouazoubira (brown brocket deer) oocytes obtained after ovarian stimulation. Zygote, 29: 216–222. Search in Google Scholar

Roth T.L., Weiss R.B., Buff J.L., Bush L.M., Wildt D.E., Bush M. (1998). Heterologous in vitro fertilization and sperm capacitation in an endangered African antelope, the scimitar– horned oryx (Oryx dammah). Biol. Reprod., 58: 475–482. Search in Google Scholar

Santiago-Moreno J., Esteso M.C., Castaño C., Toledano-Díaz A., Rodríguez E., López-Sebastián A. (2014). Sperm selection by Capripure® density-gradient centrifugation versus the dextran swim-up procedure in wild mountain ruminants. Anim. Reprod. Sci., 149: 178–186. Search in Google Scholar

Schook M.W., Wildt D.E., Weiss R.B., Wolfe B.A., Archibald K.E., Pukazhenthi B.S. (2013). Fundamental studies of the reproductive biology of the endangered Persian onager (Equus hemionus onager) result in first wild equid offspring from artificial insemination. Biol. Reprod., 89: 41–51. Search in Google Scholar

Siriaroonrat B., Comizzoli P., Songsasen N., Monfort S.L., Wildt D.E., Pukazhenthi B.S. (2010). Oocyte quality and estradiol supplementation affect in vitro maturation success in the white-tailed deer (Odocoileus virginianus). Theriogenology, 73: 112–119. Search in Google Scholar

Sontakke S.D. (2018). Monitoring and controlling ovarian activities in wild ungulates. Theriogenology, 109: 31–41. Search in Google Scholar

Stoops M.A., O’Brien J.K., Roth T.L. (2011). Gamete rescue in the African black rhinoceros (Diceros bicornis). Theriogenology, 76: 1258–1265. Search in Google Scholar

Tervit H.R., Whittingham D.G., Rowson L.E.A. (1972). Successful culture in vitro of sheep and cattle ova. Reproduction, 30: 493–497. Search in Google Scholar

Thongphakdee A., Berg D.K., Tharasanit T., Thongtip N., Tipkantha W., Punkong C., Tongthainan D., Noimoon S., Maikeaw U., Kajornklin N., Siriaroonrat B., Comizzoli P., Kamolnorranath S. (2017). The impact of ovarian stimulation protocol on oocyte quality, subsequent in vitro embryo development, and pregnancy after transfer to recipients in Eld’s deer (Rucervus eldii thamin). Theriogenology, 91: 134–144. Search in Google Scholar

Trasorras V.L., Chaves M.G., Miragaya M.H., Pinto M., Rutter B., Flores M., Agüero A. (2009). Effect of eCG superstimulation and buserelin on cumulus–oocyte complexes recovery and maturation in llamas (Lama glama). Reprod. Domest. Anim., 44: 359–364. Search in Google Scholar

Tulake K., Yanagawa Y., Takahashi Y., Katagiri S., Higaki S., Koyama K., Wang X., Li H. (2014). Effects of ovarian storage condition on in vitro maturation of Hokkaido sika deer (Cervus nippon yesoensis) oocytes. Jpn. J. Vet., 62: 187–192. Search in Google Scholar

Velamazan M., Perea R., Bugalho M.N. (2020). Ungulates and ecosystem services in Mediterranean woody systems: A semi-quantitative review. J. Nat. Conserv., 55: 125837. Search in Google Scholar

Yin Y., Tang L., Zhang P., Kong D., Wang Z., Guan J., Song G., Tan B., Li Z. (2013). Optimizing the conditions for in vitro maturation and artificial activation of sika deer (Cervus nippon hortulorum) oocytes. Reprod. Domest. Anim., 48: 27–32. Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo