1. bookVolumen 49 (2022): Heft 1 (January 2022)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1338-7014
Erstveröffentlichung
16 Apr 2017
Erscheinungsweise
2 Hefte pro Jahr
Sprachen
Englisch
access type Uneingeschränkter Zugang

Can the invasive ambrosia beetle Xylosandrus germanus withstand an unusually cold winter in the West Carpathian forest in Central Europe?

Online veröffentlicht: 30 Dec 2021
Volumen & Heft: Volumen 49 (2022) - Heft 1 (January 2022)
Seitenbereich: 1 - 8
Eingereicht: 26 May 2021
Akzeptiert: 02 Aug 2021
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1338-7014
Erstveröffentlichung
16 Apr 2017
Erscheinungsweise
2 Hefte pro Jahr
Sprachen
Englisch
Abstract

The capability of a non-native species to withstand adverse weather is indicative of its establishment in a novel area. An unusually cold winter of 2016/2017 that occurred in the West Carpathians of Slovakia and other regions within Europe provided an opportunity to indirectly assess survival of the invasive ambrosia beetle Xylosandrus germanus (Coleoptera: Curculionidae, Scolytinae). We compared trap captures of this species in the year preceding and succeeding the respective cold winter. Ethanol-baited traps were deployed in 24 oak dominated forest stands within the southern and central area from April to August 2016, and again from April to August 2017 to encompass the seasonal flight activity of X. germanus and to get acquainted with temporal changes in the abundance of this species in these two distant areas. Dispersing X. germanus were recorded in all surveyed stands before and after the aforementioned cold winter. Their total seasonal trap captures were lower in the southern area following low winter temperatures, but remained similar in the central area. Our results suggest that X. germanus can withstand adverse winter weather in oak dominated forests of the West Carpathians within altitudes of 171 and 450 m asl. It is likely that minimum winter temperatures will not reduce the establishment or further spread of this successful invader in forests in Central Europe.

Agnello, A., Breth, D., Tee, E., Cox, K., Warren, H.R., 2015. Ambrosia beetle–an emergent apple pest. New York Fruit Quarterly, 23: 25–28. [cit. 2021-05-04]. http://nyshs.org/wp-content/uploads/2015/03/25-28-Agnello-Pages-NYFQ-Book-Spring-2015.eg-5.pdf Search in Google Scholar

Agnello, A.M., Breth, D.I., Tee, E.M., Cox, K.D., Villani, S.M., Ayer, K.M., Wallis, A.E., Donahue, D.J., Combs, D.B., Davis, A.E., Neal, J.A., 2017. Xylosandrus germanus (Coleoptera: Curculionidae: Scolytinae) occurrence, fungal associations, and management trials in New York apple orchards. Journal of Economic Entomology, 110: 2149–2164. https://doi.org/10.1093/jee/tox18910.1093/jee/tox18929048587 Search in Google Scholar

Anagnostopoulou, C., Tolika, K., Lazoglou, G., Maheras, P., 2017. The exceptionally cold January of 2017 over the Balkan Peninsula: A climatological and synoptic analysis. Atmosphere, 8 (12): 252. https://doi.org/10.3390/atmos812025210.3390/atmos8120252 Search in Google Scholar

Bale, J.S., Hayward, S.A.L., 2010. Insect overwintering in a changing climate. Journal of Experimental Biology, 213 (6): 980–994. https://doi.org/10.1242/jeb.03791110.1242/jeb.03791120190123 Search in Google Scholar

Björklund, N., Boberg, J., 2017. Rapid pest risk analysis Xylosandrus germanus. Unit for Risk Assessment of Plant Pests, Swedish University of Agricultural Sciences. [cit. 2021-04-08]. https://pub.epsilon.slu.se/15119/1/xylosandrus-germanus-rapid-pest-risk-analysis.pdf Search in Google Scholar

Boggs, C.L., 2016. The fingerprints of global climate change on insect populations. Current Opinion in Insect Science, 17: 69–73. https://doi.org/10.1016/j.cois.2016.07.00410.1016/j.cois.2016.07.00427720076 Search in Google Scholar

Brar, G.S., Capinera, J.L., Kendra, P.E., Smith, J.A., Peña, J.E., 2015. Temperature-dependent development of Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae). Florida Entomologist, 98 (3): 856–864. https://doi.org/10.1653/024.098.030710.1653/024.098.0307 Search in Google Scholar

Brin, A., Bouget, C., Brustel, H., Jactel, H., 2011. Diameter of downed woody debris does matter for saproxylic beetle assemblages in temperate oak and pine forests. Journal of Insect Conservation, 15 (5): 653–669. https://doi.org/10.1007/s10841-010-9364-510.1007/s10841-010-9364-5 Search in Google Scholar

Bruge, H., 1995. Xylosandrus germanus (Blandford, 1894) (Belg. sp. nov.) (Coleoptera Scolytidae). Bulletin & Annales de la Société Royale Belge d’Entomologie, 131 (2): 249–264. Search in Google Scholar

Bussler, H., Bouget, C., Brustel, H., Brändle, M., Riedinger, V., Brandl, R., Müller, J., 2011. Abundance and pest classification of scolytid species (Coleoptera: Curculionidae, Scolytinae) follow different patterns. Forest Ecology and Management, 262 (9): 1887–1894. https://doi.org/10.1016/j.foreco.2011.08.01110.1016/j.foreco.2011.08.011 Search in Google Scholar

Cabi, 2019. Xylosandrus germanus (black timber bark beetle). [cit. 2020-6-15]. https://www.cabi.org/isc/datasheet/57237 Search in Google Scholar

Cooperband, M.F., Stouthamer, R., Carrillo, D., Eskalen, A., Thibault, T., Cossé, A.A., Castrillo, L.A., Vandenberg, J.D., Rugman-Jones, P.F., 2016. Biology of two members of the Euwallacea fornicatus species complex (Coleoptera: Curculionidae: Scolytinae), recently invasive in the USA, reared on an ambrosia beetle artificial diet. Agricultural and Forest Entomology, 18 (3): 223-237. DOI: 10.1111/afe.1215510.1111/afe.12155 Search in Google Scholar

Fiala, T., Holuša, J., Procházka, J., Čížek, L., Dzurenko, M., Foit, J., Galko, J., Kašák, J., Kulfan, J., Lakatos, F., Nakládal, O., Schlaghamerský, J., Svatoš, M., Trombik, J., Zábranský, P., Zach, P., Kula, E., 2020. Xylosandrus germanus in Central Europe: spread into and within the Czech Republic. Journal of Applied Entomology, 144 (6): 423–443. https://doi.org/10.1111/jen.1275910.1111/jen.12759 Search in Google Scholar

Formby, J.P., Krishnan, N., Riggins, J.J., 2013. Supercooling in the redbay ambrosia beetle (Coleoptera: Curculionidae). Florida Entomologist, 96 (4): 1530–1541. https://doi.org/10.1653/024.096.043510.1653/024.096.0435 Search in Google Scholar

Formby, J.P., Rodgers, J.C., Koch, F.H., Krishnan, N., Duerr, D.A., Riggins, J.J., 2018. Cold tolerance and invasive potential of the redbay ambrosia beetle (Xyleborus glabratus) in the eastern United States. Biological Invasions, 20 (4): 995–1007. https://doi.org/10.1007/s10530-017-1606-y10.1007/s10530-017-1606-y Search in Google Scholar

Forrest, J.R., 2016. Complex responses of insect phenology to climate change. Current Opinion in Insect Science, 17: 49–54. https://doi.org/10.1016/j.cois.2016.07.00210.1016/j.cois.2016.07.00227720073 Search in Google Scholar

Galko, J., 2013. First record of the ambrosia beetle, Xylosandrus germanus (Blandford, 1894) (Coleoptera: Curculionidae, Scolytinae) in Slovakia. Forestry Journal, 58 (4): 279. [cit. 2021-05-21]. http://www.los.sk/apvv/galko_biocom4_13.pdf Search in Google Scholar

Galko, J., Dzurenko, M., Ranger, C.M., Kulfan, J., Kula, E., Nikolov, C., Zúbrik, M., Zach, P., 2019. Distribution, habitat preference, and management of the invasive ambrosia beetle Xylosandrus germanus (Coleoptera: Curculionidae, Scolytinae) in European forests with an emphasis on the West Carpathians. Forests, 10 (1): 10. https://doi.org/10.3390/f1001001010.3390/f10010010 Search in Google Scholar

Galko, J., Nikolov, C., Kimoto, T., Kunca, A., Gubka, A., Vakula, J., Zúbrik, M., Ostrihoň, M., 2014. Attraction of ambrosia beetles to ethanol baited traps in a Slovakian oak forest. Biologia, 69 (10): 1376–1383. https://doi.org/10.2478/s11756-014-0443-z10.2478/s11756-014-0443-z Search in Google Scholar

Gomez, D.F., Rabaglia, R.J., Fairbanks, K.E., Hulcr, J., 2018. North American Xyleborini north of Mexico: a review and key to genera and species (Coleoptera, Curculionidae, Scolytinae). ZooKeys, 768: 19–68. https://doi.org/10.3897/zookeys.768.2469710.3897/zookeys.768.24697601943629955211 Search in Google Scholar

Gossner, M.M., Falck, K., Weisser, W.W., 2019. Effects of management on ambrosia beetles and their antagonists in European beech forests. Forest Ecology and Management, 437: 126–133. https://doi.org/10.1016/j.foreco.2019.01.03410.1016/j.foreco.2019.01.034 Search in Google Scholar

Halekoh, U., Højsgaard, S., Yan, J., 2006. The R package geepack for generalized estimating equations. Journal of Statistical Software, 15 (2): 1–11. DOI: 10.18637/jss. v015.i02 Search in Google Scholar

Hauptman, T., Pavlin, R., Grošelj, P., Jurc, M., 2019. Distribution and abundance of the alien Xylosandrus germanus and other ambrosia beetles (Coleoptera: Curculionidae, Scolytinae) in different forest stands in central Slovenia. iForest, 12: 451–458. https://doi.org/10.3832/ifor3114-01210.3832/ifor3114-012 Search in Google Scholar

Henin, J.M., Versteirt, V., 2004. Abundance and distribution of Xylosandrus germanus (Blandford 1894) (Coleoptera, Scolytidae) in Belgium: new observations and an attempt to outline its range. Journal of Pest Science, 77 (1): 57–63. https://doi.org/10.1007/s10340-003-0030-510.1007/s10340-003-0030-5 Search in Google Scholar

Holzschuh, C., 1993. Erster Nachweis des Schwarzen Nutzholzborkenkäfers (Xylosandrus germanus) in Österreich [The first record of the black timber bark beetle Xylosandrus germanus in Austria]. Forstschutz Aktuell, 12 (10). Search in Google Scholar

Ito, M., Kajimura, H., Hamaguchi, K., Araya, K., Lakatos, F., 2008. Genetic structure of Japanese populations of an ambrosia beetle, Xylosandrus germanus (Curculionidae: Scolytinae). Entomological Science, 11: 375–383. DOI: 10.1111/j.1479-8298.2008.00280.x10.1111/j.1479-8298.2008.00280.x Search in Google Scholar

Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O.B., Bouwer, L.M., Braun, A., Colette, A., Déqué, M., Georgievski, G., Georgopoulou, E., 2014. EURO-CORDEX: new high-resolution climate change projections for European impact research. Regional Environmental Change, 14: 563–578. DOI: 10.1007/s10113-013-0499-210.1007/s10113-013-0499-2 Search in Google Scholar

Kamp, H.J., 1968. Der „Schwarze Nutzholzborkenkäfer” Xylosandrus germanus Blandf., ein Neuling der heimischen Insektenfauna [The „black timber bark beetle“ Xylosandrus germanus Blandf., a newcomer to the local insect fauna]. Entomologische Blätter, 64: 31–39. Search in Google Scholar

Kelsey, R.G., 1994. Ethanol synthesis in Douglas-fir logs felled in November, January, and March and its relationship to ambrosia beetle attack. Canadian Journal of Forest Research, 24 (10): 2096–2104. DOI: 10.1139/x94-26910.1139/x94-269 Search in Google Scholar

Klimetzek, D., Köhler, J., Vité, J.P., Kohnle, U., 1986. Dosage response to ethanol mediates host selection by “secondary” bark beetles. Naturwissenschaften, 73: 270–272. DOI: 10.1007/BF0036778310.1007/BF00367783 Search in Google Scholar

La Spina, S., De Cannière, C., Dekri, A., Grégoire, J., 2013. Frost increases beech susceptibility to Scolytine ambrosia beetles. Agricultural and Forest Entomology, 15: 157–167. DOI: 10.1111/j.1461-9563.2012.00596.x10.1111/j.1461-9563.2012.00596.x Search in Google Scholar

Lehmann, P., Ammunet, T., Barton, M., Battisti, A., Eigenbrode, S.D., Jepsen, J.U., Kalinkat, G., Neuvonen, S., Niemelä, P., Terblanche, J.S., Okland, B., Björkman, C., 2020. Complex responses of global insect pests to climate warming. Frontiers in Ecology and the Environment, 18 (3): 141–150. https://doi.org/10.1002/fee.216010.1002/fee.2160 Search in Google Scholar

Liang, K., Zeger, S., 1986. Longitudinal data analysis using generalized linear models. Biometrika, 73: 13–22. https://doi.org/10.1093/biomet/73.1.1310.1093/biomet/73.1.13 Search in Google Scholar

Marini, L., Haack, R.A., Rabaglia, R.J., Toffolo, E.P., Battisti, A., Faccoli, M., 2011. Exploring associations between international trade and environmental factors with establishment patterns of exotic Scolytinae. Biological Invasions, 13 (10): 2275–2288. DOI: 10.1007/s10530-011-0039-210.1007/s10530-011-0039-2 Search in Google Scholar

Mayr, S., Wieser, G., Bauer, H., 2006. Xylem temperatures during winter in conifers at the alpine timberline. Agricultural and Forest Meteorology, 137 (1-2): 81–88. DOI: 10.1016/j.agrformet.2006.02.01310.1016/j.agrformet.2006.02.013 Search in Google Scholar

Murphy, J., 2000. Predictions of climate change over Europe using statistical and dynamical downscaling techniques. International Journal of Climatology, 20: 489–501. DOI: 10.1002/(SICI)1097-0088(200004)20:5<489::AIDJOC484>3.0.CO;2-6 Search in Google Scholar

Olenici, N., Kžek, M., Olenici, V., Duduman, M.L., Biriş, I.A., 2014. First report of three scolytid species (Coleoptera: Curculionidae, Scolytinae) in Romania. Annals of Forest Research, 57 (1): 87–95. DOI: 10.15287/afr.2014.19610.15287/afr.2014.196 Search in Google Scholar

Oliver, J.B., Mannion, C.M., 2001. Ambrosia beetle (Coleoptera: Scolytidae) species attacking chestnut and captured in ethanol-baited traps in middle Tennessee. Environmental Entomology, 30 (5): 909-918. https://doi.org/10.1603/0046-225X-30.5.90910.1603/0046-225X-30.5.909 Search in Google Scholar

Park, J., Reid, M.L., 2007. Distribution of a bark beetle, Trypodendron lineatum, in a harvested landscape. Forest Ecology and Management, 242 (2-3): 236–242. https://doi.org/10.1016/j.foreco.2007.01.04210.1016/j.foreco.2007.01.042 Search in Google Scholar

R Core Team, 2019. R: A language and environment for statistical computing. Vienna: R Foundation for statistical computing. [cit. 2021-03-19]. https://www.R-project.org/ Search in Google Scholar

Rabaglia, R.J., Cognato, A.I., Hoebeke, E.R., Johnson, C.W., LaBonte, J.R., Carter, M.E., Vlach, J.J., 2019. Early detection and rapid response: a 10-year summary of the USDA forest service program of surveillance for non-native bark and ambrosia beetles. American Entomologist, 65: 29–42. https://doi.org/10.1093/ae/tmz01510.1093/ae/tmz015 Search in Google Scholar

Ranger, C.M., Reding, M.E., Persad, A.B., Herms, D.A., 2010. Ability of stress-related volatiles to attract and induce attacks by Xylosandrus germanus and other ambrosia beetles (Coleoptera: Curculionidae, Scolytinae). Agricultural and Forest Entomology, 12: 177–185. DOI: 10.1111/j.1461-9563.2009.00469.x10.1111/j.1461-9563.2009.00469.x Search in Google Scholar

Ranger, C.M., Reding, M.E., Schultz, P., Oliver, J., 2013. Influence of flood-stress on ambrosia beetle (Coleoptera: Curculionidae, Scolytinae) host-selection and implications for their management in a changing climate. Agricultural and Forest Entomology, 15: 56–64. https://doi.org/10.1111/j.1461-9563.2012.00591.x10.1111/j.1461-9563.2012.00591.x Search in Google Scholar

Ranger, C.M., Reding, M.E., Schultz, P.B., Oliver, J.B., Frank, S.D., Addesso, K.M., Chong, J.H., Sampson, B., Werle, C., Gill, S., Krause, C., 2016. Biology, ecology, and management of nonnative ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) in ornamental plant nurseries. Journal of Integrated Pest Management, 7: 1–23. https://doi.org/10.1093/jipm/pmw00510.1093/jipm/pmw005 Search in Google Scholar

Ranger, C.M., Schultz, P.B., Frank, S.D., Reding, M.E., 2019. Freeze stress of deciduous trees induces attacks by opportunistic ambrosia beetles. Agricultural and Forest Entomology, 21: 168–179. https://doil.org/10.1111/afe.1231710.1111/afe.12317 Search in Google Scholar

Rassati, D., Faccoli, M., Battisti, A., Marini, L., 2016. Habitat and climatic preferences drive invasions of non-native ambrosia beetles in deciduous temperate forests. Biological Invasions, 18 (10): 2809-2821. https://doi.org/10.1007/s10530-016-1172-810.1007/s10530-016-1172-8 Search in Google Scholar

Reding, M., Oliver, J., Schultz, P., Ranger, C.M., 2010. Monitoring flight activity of ambrosia beetles in ornamental nurseries with ethanol-baited traps: Influence of trap height on captures. Journal of Environmental Horticulture, 28 (2): 85–90. https://doi.org/10.24266/0738-2898-28.2.8510.24266/0738-2898-28.2.85 Search in Google Scholar

Reding, M.E., Ranger, C.M., Oliver, J.B., Schultz, P.B., 2013. Monitoring attack and flight activity of Xylosandrus spp. (Coleoptera: Curculionidae: Scolytinae): The influence of temperature on activity. Journal of Economic Entomology, 106 (4): 1780-1787. https://doi.org/10.1603/EC1313410.1603/EC1313424020293 Search in Google Scholar

Sauvard, D., 2007. General biology of bark beetles. In Lieutier, F., Day, K.R., Battisti, A., Grégoire, J., Evans H.F. (eds). Bark and wood boring insects in living trees in Europe, a synthesis. Dordrecht: Springer, 2007, p. 63–88.10.1007/978-1-4020-2241-8_7 Search in Google Scholar

Steininger, M.S., Hulcr, J., Šigut, M., Lucky, A., 2015. Simple and efficient trap for bark and ambrosia beetles (Coleoptera: Curculionidae) to facilitate invasive species monitoring and citizen involvement. Journal of Economic Entomology, 108 (3): 1115–1123. https://doi.org/10.1093/jee/tov01410.1093/jee/tov01426470236 Search in Google Scholar

Šťastný, P., Bochníček, O., Faško, P., Nejedlík, P., Snopková, Z., 2015. Klimatický atlas Slovenska. Climate atlas of Slovakia. Bratislava: Slovenský hydrometeorologický ústav. 132 p. Search in Google Scholar

Turňa, M., Faško, P., Ivaňáková, G., Šťastný, P., 2017. Zhodnotenie mesiaca január 2017 [Evaluation of the month January 2017]. Aktuality SHMÚ, 1. 2. 2017. [cit. 2020-6-15]. http://www.shmu.sk/sk/?page=2049&id=805 Search in Google Scholar

Ungerer, M.J., Ayres, M.P., Lombardero, M.J., 1999. Climate and the northern distribution limits of Dendroctonus frontalis Zimmermann (Coleoptera: Scolytidae). Journal of Biogeography, 26 (6): 1133–1145. [cit. 2021-03-26]. http://www.jstor.org/stable/265605710.1046/j.1365-2699.1999.00363.x Search in Google Scholar

van der Krieke, L., Blaauw, F.J., Emerencia, A.C., Schenk, H.M., Slaets, J.P.J., Bos, E.H., de Jonge, P., Jeronimus, B.F., 2017. Temporal dynamics of health and well-being: A crowdsourcing approach to momentary assessments and automated generation of personalized feedback. Psychosomatic Medicine, 79 (2): 213-223. DOI: 10.1097/PSY.000000000000037810.1097/PSY.000000000000037827551988 Search in Google Scholar

Vermunt, B., Cuddington, K., Sobek-Swant, S., Crosthwaite, J.C., Lyons, D.B., Sinclair, B.J., 2012. Temperatures experienced by wood-boring beetles in the under-bark microclimate. Forest Ecology and Management, 269: 149–157. https://doi.org/10.1016/j.foreco.2011.12.01910.1016/j.foreco.2011.12.019 Search in Google Scholar

Watanabe, K., Murakami, M., Hirao, T., Kamata, N., 2014. Species diversity estimation of ambrosia and bark beetles in temperate mixed forests in Japan based on host phylogeny and specificity. Ecological Research, 29 (2): 299–307. DOI: 10.1007/s11284-013-1123-010.1007/s11284-013-1123-0 Search in Google Scholar

Weber, B.C., McPherson, J.E., 1983. Life history of the ambrosia beetle Xylosandrus germanus (Coleoptera: Scolytidae). Annals of the Entomological Society of America, 76 (3): 455–462. https://doi.org/10.1093/aesa/76.3.45510.1093/aesa/76.3.455 Search in Google Scholar

Wichmann, H.E., 1955. Zur derzeitigen Verbreitung des Japanisches Nutzholzborkenkäfers Xylosandrus germanus Blandf. im Bundesgebiete [On the current distribution of the Japanese timber bark beetle Xylosandrus germanus Blandf. in federal territories]. Zeitschrift für Angewandte Entomologie, 37: 250–258. https://doi.org/10.1111/j.1439-0418.1955.tb00786.x10.1111/j.1439-0418.1955.tb00786.x Search in Google Scholar

Zach, P., Topp, W., Kulfan, J., Simon, M., 2001. Colonization of two alien ambrosia beetles (Coleoptera, Scolytidae) on debarked spruce logs. Biologia, 56: 175–181. Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo