1. bookVolume 37 (2021): Issue 3 (September 2021)
    Special Issue on Population Statistics for the 21st Century
Zeitschriftendaten
License
Format
Zeitschrift
Erstveröffentlichung
01 Oct 2013
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
access type Open Access

Fay-Herriot Model-Based Prediction Alternatives for Estimating Households with Emigrated Members

Online veröffentlicht: 13 Sep 2021
Seitenbereich: 771 - 789
Eingereicht: 01 May 2019
Akzeptiert: 01 May 2020
Zeitschriftendaten
License
Format
Zeitschrift
Erstveröffentlichung
01 Oct 2013
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch

Akaike, H., 1974. “A new look at the statistical model identification.” IEEE transactions on automatic control, 19 (6): 716–723. DOI: https://doi.org/10.1109/TAC.1974.1100705. Search in Google Scholar

Anand. S., and A. Sen. 1997. Concepts or human development and poverty: a multidimensional perspective. United Nations Development Programme, Poverty and human development: Human development papers: 1–20. Available at: http://clasarchive.berkeley.edu/Academics/courses/center/fall2007/sehnbruch/UNDP%20Anand%20and%20Sen%20Concepts%20of%20HD%201997.pdf (accessed April 2020). Search in Google Scholar

Benavent, R., and D. Morales. 2016. “Multivariate Fay-Herriot models for small area estimation.” Computational Statistics and Data Analysis, 94: 372–390. DOI: https://doi.org/10.1016/j.csda.2015.07.013. Search in Google Scholar

Burgard, J.P., M.D. Esteban, D. Morales, and A. Pérez. 2020a. “A Fay-Herriot model when auxiliary variables are measured with error.” TEST, 29 (1): 166–195. DOI: https://doi.org/10.1007/s11749-019-00649-3. Search in Google Scholar

Burgard, J.P., M.D. Esteban, D. Morales, and A. Pérez. 2020a. “Small area estimation under a measurement error bivariate Fay-Herriot model.” Statistical Methods and Applications. DOI: https://doi.org/10.1007/s10260–020–00515–9. Search in Google Scholar

Datta, G.S., M. Ghosh, R. Steorts, and J. Maples. 2011. “Bayesian benchmarking with applications to small area estimation.” Test, 20 (3): 574–588. DOI: https://doi.org/10.1007/s11749-010-0218-y. Search in Google Scholar

Datta, G.S., and P. Lahiri. 2000. “A unified measure of uncertainty of estimated best linear unbiased predictors in small area estimation problems.” Statistica Sinica, 10: 613–627. Available at: https://www.jstor.org/stable/24306735. Search in Google Scholar

Edmonston, B., and M. Michalowski. 2004. “International Migration.” In: The Methods and Materials of Demography. Edited by H. Shryock, J. Siegel, and D. Swanson. Second Edition. New York: Academic Press. Search in Google Scholar

Esteban, M.D., D. Morales, A. Pérez, and L. Santamaría. 2012. “Small area estimation of poverty proportions under area-level time models.” Computational Statistics and Data Analysis, 56: 2840–2855. Search in Google Scholar

Fay, R.E., and R.A. Herriot. 1979. “Estimates of income for small places: an application of James-Stein procedures to census data.” Journal of the American Statistical Association, 74: 269–277. Search in Google Scholar

González-Manteiga, W., M.J. Lombardía, I. Molina, D. Morales, and L. Santamaría. 2010. “Small area estimation under Fay-Herriot models with nonparametric estimation of heteroscedasticity.” Statistical Modelling, 10(2): 215–239. Search in Google Scholar

Hájek, J. 1971. Comment on “An Essay on the Logical Foundations of Survey Sampling, Part One.” In: The Foundations of Survey Sampling., edited by V.P. Godambe, and D.A. Sprott: 236. Holt, Rinehart, and Winston. Search in Google Scholar

Hobza, T., and D. Morales. 2016. “Empirical Best Prediction Under Unit-Level Logit Mixed Models.” Journal of Offcial Statistics, 32 (3): 661–69. DOI: http://dx.doi.org/10.1515/JOS-2016-0034. Search in Google Scholar

Hobza, T., D. Morales, and L. Santamaría, 2018. “Small area estimation of poverty proportions under unit-level temporal binomial-logit mixed models.” TEST, 27 (2): 270–294. Search in Google Scholar

Jiang, J. 2007. Linear and generalized linear mixed models and their applications. Springer Verlag. Search in Google Scholar

Marhuenda, Y., I. Molina, and D Morales. 2013. “Small area estimation with spatio-temporal Fay-Herriot models.” Computational Statistics and Data Analysis, 58: 308–325. DOI: https://doi.org/10.1016/j.csda.2012.09.002. Search in Google Scholar

Marhuenda, Y., I. Molina, D. Morales, and J.N.K. Rao. 2017. “Poverty mapping in small areas under a two-fold nested error regression model.” Journal of the Royal Statistical Society, series A. 180 (4): 1111–1136. Search in Google Scholar

Migración-Colombia. 2015. Ministerio de Relaciones Exteriores: Comportamiento migratorio colombiano. Boletín anual de estadísticas. Enero a diciembre 2015. Migración.: 16–23. Availablet at: http://migracioncolombia.gov.co/index.php/es/. Search in Google Scholar

Molina, I., N. Salvati, and M. Pratesi. 2009. “Bootstrap for estimating the MSE of the spatial EBLUP.” Computational Statistics, 24: 441–458. Search in Google Scholar

Morales, D., M.C. Pagliarella, and R. Salvatore. 2015. “Small area estimation of poverty indicators under partitioned area-level time models.” SORT-Statistics and Operations Research Transactions, 39 (1): 19–34. Available at: https://raco.cat/index.php/SORT/article/view/294361 (accessed August 2021). Search in Google Scholar

Morales, D., M.M. Rueda, and M.D. Esteban. 2018. “Model-assisted estimation of small area poverty measures: an application within the Valencia Region in Spain.” Social Indicators Research. 138 (3): 873–900. DOI: https://doi.org/10.1007/s11205-017-1678-1. Search in Google Scholar

Plane, D.A. 1982. “An Information Theoretic Approach to the Estimation of Migration Flows.” Journal of Regional Science, 22: 441–456. Search in Google Scholar

Prasad, N.G.N., and J.N.K. Rao. 1990. “The estimation of the mean squared error of small-area estimators.” Journal of the American Statistical Association, 85: 163–171. DOI: https://doi.org/10.2307/2289539. Search in Google Scholar

Pratesi, M., and N. Salvati. 2008. “Small area estimation: the EBLUP estimator based on spatially correlated random area effects.” Statistical Methods and Applications, 17: 113–141. DOI: https://doi.org/10.1007/s10260-007-0061-9. Search in Google Scholar

Profamilia. 2015. Profamilia. 2015. Encuesta Nacional de Demografía y Salud – ENDS. Available at: https://profamilia.org.co/investigaciones/ends/. Search in Google Scholar

Rao, J.N.K., and I. Molina. 2015. Small area estimation, second edition. John Wiley, Hoboken (NJ). Search in Google Scholar

Raymer, J. 2007. “The Estimation of International Migration Flows: A General Technique Focused on the Origin-Destination Association Structure.” Environment and Planning A, 39: 985–995. DOI: https://doi.org/10.1068/a38264. Search in Google Scholar

Raymer, J., and A. Rogers. 2007. “Using Age and Spatial Flow Structures in the Indirect Estimation of Migration Streams.” Demography, 44: 199–223. DOI: https://doi.org/10.1353/dem.2007.0016. Search in Google Scholar

Raymer, J. 2010. “A general framework for estimating population movements.” In Demographic aspects of migration: 73–96. DOI: https://doi.org/10.1007/978-3-531-92563-9. Search in Google Scholar

Schall, R. 1991. “Estimation in generalized linear models with random effects.” Biometrika, 78, 4, 719–727. DOI: https://doi.org/10.2307/2336923. Search in Google Scholar

Smith, P.W.F., J. Raymer, and C. Giulietti. 2010. “Combining available migration data in England to study economic activity flows over time.” Journal of the Royal Statistical Society, series A, 173 (4): 733–753. DOI: https://doi.org/10.1111/j.1467-985X.2009.00630.x. Search in Google Scholar

Smith, S.K., J. Tayman, and D.A. Swanson. 2013. A practitioner’s guide to state and local population projections. Springer-Verlag. Search in Google Scholar

Särndal, C.E., B. Swensson, and J. Wretman. 1992. Model assisted survey sampling. Springer-Verlag. Search in Google Scholar

Willekens, F. 2008. “Models of Migration: Observations and Judgements.” In International Migration in Europe: Data, Models and Estimates, 117–147, edited by J. Raymer, J. and Willekens, F. University of Southampton. Division of Social Statistics. John Wiley, Hoboken, New Jersey. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo