1. bookVolumen 22 (2021): Heft 4 (November 2021)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1407-6179
Erstveröffentlichung
20 Mar 2000
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
access type Uneingeschränkter Zugang

Development of Reliable Models of Signal-Controlled Intersections

Online veröffentlicht: 20 Nov 2021
Seitenbereich: 417 - 424
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1407-6179
Erstveröffentlichung
20 Mar 2000
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Abstract

The paper considers an approach to building various mathematical models for homogeneous groups of intersections manifested through the use of clustering methods. This is because of a significant spread in their traffic capacity, as well as the influence of several random factors. The initial data on the traffic flow of many intersections was obtained from real-time recorders of the convolutional neural network. As a result of the analysis, we revealed statistically significant differences between the groups of intersections and compiled their linear regression models as a basis for the subsequent formation of generic management decisions. To demonstrate visually the influence of random factors on the traffic capacity of intersections, we built distribution fields based on the fuzzy logic methods for one of the clusters consisting of 14 homogeneous intersections. Modeling was based on the Gaussian type of membership functions as it most fully reflects the random nature of the pedestrian flow and its discontinuity.

1. Aleko, D.R., Djahel, S. (2020) An efficient adaptive traffic light control system for urban road traffic congestion reduction in smart cities. Information (Switzerland), 11(2) paper 119. DOI: 10.3390/info11020119.10.3390/info11020119 Search in Google Scholar

2. Barlović, R., Huisinga, T., Schadschneider, A., Schreckenberg, M. (2005) Adaptive traffic light control in the ChSch model for city traffic. In: Proceedings of the 5th International Workshop on Traffic and Granular Flow, Delft, October 2003. Springer Berlin Heidelberg, 331-336. DOI: 10.1007/3-540-28091-x_32.10.1007/3-540-28091-X_32 Search in Google Scholar

3. Bodenheimer, R., Eckhoff, D., German, R. (2015) GLOSA for adaptive traffic lights: Methods and evaluation. In: Proceedings of the 7th International Workshop on Reliable Networks Design and Modeling, Munich, October 2015, paper 7325247, 320-328. Institute of Electrical and Electronics Engineers Inc. DOI: 10.1109/RNDM.2015.7325247.10.1109/RNDM.2015.7325247 Search in Google Scholar

4. Buch, N., Velastin, S.A., Orwell, J. (2011) A review of computer vision techniques for the analysis of urban traffic. IEEE Transactions on Intelligent Transportation Systems, 12, 920–939. DOI: 10.1109/TITS.2011.2119372.10.1109/TITS.2011.2119372 Search in Google Scholar

5. Clara Fang, F., Pham, C.V. (2019) An intelligent traffic signal control system based on fuzzy theory. In: Proceedings of the 19th COTA International Conference of Transportation Professionals, Nanjing, July 2019, 3020-3031. American Society of Civil Engineers. DOI: 10.1061/9780784482292.26110.1061/9780784482292.261 Search in Google Scholar

6. Delavarian, M., Marouzi, O.R., Hassanpour, H., Parizi, R.M., Khan, M.S. (2020) Multi-camera multiple vehicle tracking in urban intersections based on multilayer graphs. IET Intelligent Transport Systems, 14(12), 1673-1690. DOI: 10.1049/iet-its.2020.008610.1049/iet-its.2020.0086 Search in Google Scholar

7. Ding, J.M., Wang, C.H. (2009) Optimizing signal controls for urban mixed use transport arterial. Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 30(12), 1404-1408. DOI: 10.3969/j.issn.1006-7043.2009.12.011. Search in Google Scholar

8. Djuana, E., Rahardjo, K., Gozali, F., Tan, S., Rambung, R., Adrian, D. (2018) Simulating and evaluating an adaptive and integrated traffic lights control system for smart city application. In: Proceedings of the 4th International Seminar on Sustainable Urban Development, Jakarta, August, 106(1), paper 012031. Institute of Physics Publishing.10.1088/1755-1315/106/1/012031 Search in Google Scholar

9. Do, L.N.N., Taherifar, N., Vu, H.L. (2019) Survey of neural network-based models for short-term traffic state prediction. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(1), paper e1285. DOI: 10.1002/widm.1285.10.1002/widm.1285 Search in Google Scholar

10. El-Khoreby, M.A., Abu-Bakar, S.A.R., Mokji, M.M., Omar, S.N. (2020) Performance Comparison between SVM and K-Means for Vehicle Counting. In: Proceedings of the Sustainable and Integrated Engineering International Conference, Putrajaya, December 2019, 884(1), paper 012077. IOP Publishing Ltd. DOI: 10.1088/1757-899X/884/1/012077.10.1088/1757-899X/884/1/012077 Search in Google Scholar

11. Garg, K., Ramakrishnan, N., Prakash, A., Srikanthan, T. (2020) Rapid and robust background modeling technique for low-cost road traffic surveillance systems. IEEE Transactions on Intelligent Transportation Systems, 21(5), paper 8725944, 2204-2215. DOI: 10.1109/TITS.2019.2917560.10.1109/TITS.2019.2917560 Search in Google Scholar

12. Kapski, D., Kasyanik, V., Lobashov, O., Volynets, A., Kaptsevich, O., Galkin, A. (2019) Estimating the parameters of traffic flows on the basis of processing of localization data on the movement of vehicles. Communications – Scientific Letters of the University of Zilina, 21(2), 89-99. DOI: https://doi.org/10.26552/com.C.2019.2.89-99.10.26552/com.C.2019.2.89-99 Search in Google Scholar

13. Kazhaev, A., Almetova, Z., Shepelev, V., Shubenkova, K. (2018) Modelling urban route transport network parameters with traffic, demand and infrastructural limitations being considered. In: Proceedings of the 3rd International Conference on Sustainable, Moscow, May 2018, 177(1), paper 012018. Institute of Physics Publishing. DOI:10.1088/1755-1315/177/1/012018/ Search in Google Scholar

14. Kedia, A.S., Saw, K.B., Katti, B.K. (2015) Fuzzy logic approach in mode choice modelling for education trips: A case study of Indian metropolitan city. Transport, 30(3), 286-293. DOI: 10.3846/16484142.2015.1081279.10.3846/16484142.2015.1081279 Search in Google Scholar

15. Kwatirayo, S., Almhana, J., Liu, Z. (2013) Optimizing intersection traffic flow using VANET. In: Proceedings of the IEEE International Conference on Sensing, Communications and Networking, New Orleans, June 2013, paper 6644993, 260-262. IEEE Computer Society. DOI: 10.1109/SAHCN.2013.6644993.10.1109/SAHCN.2013.6644993 Search in Google Scholar

16. Lian, J., Zhang, J., Gan, T., Jiang, S. (2018) Vehicle type classification using hierarchical classifiers. Journal of Physics: Conference Series, 1069(1), paper 012099. DOI: 10.1088/1742-6596/1069/1/012099.10.1088/1742-6596/1069/1/012099 Search in Google Scholar

17. Lin, H., Aye, K.M., Tun, H.M., Theingi, Naing, Z.M. (2008) Design and construction of intelligent traffic light control system using fuzzy logic. In: Proceedings of the International Conference on Power Control and Optimization, Chiang Mai, July, paper 1052, 237-239. AIP Publishing. DOI: 10.1063/1.3008674.10.1063/1.3008674 Search in Google Scholar

18. Luo, X., Li, D., Yang, Y., Zhang, S. (2019) Spatiotemporal traffic flow prediction with KNN and LSTM. Journal of Advanced Transportation, paper 4145353. DOI: 10.1155/2019/4145353.10.1155/2019/4145353 Search in Google Scholar

19. Lyapin, S., Rizaeva, Y., Kadasev, D., Voronin, N. (2019) Application of simulation modelling to improve the functioning of the module of intelligent transport and logistics system. In: Proceedings of the 21st International Conference “Complex Systems: Control and Modeling Problems”, Samara, paper 8976553, 143-147. Institute of Electrical and Electronics Engineers Inc. DOI: 10.1109/CSCMP45713.2019.8976553.10.1109/CSCMP45713.2019.8976553 Search in Google Scholar

20. Peppa, M.V., Bell, D., Komar, T., Xiao, W. (2018) Urban traffic flow analysis based on deep learning car detection from cctv image series. In: Proceedings of the ISPRS TC IV Mid-Term Symposium on 3D Spatial Information Science – The Engine of Change, Delft, October 2018, 42(4), 565-572. International Society for Photogrammetry and Remote Sensing. DOI: 10.5194/isprs-archives-XLII-4-499-2018.10.5194/isprs-archives-XLII-4-499-2018 Search in Google Scholar

21. Peppa, M.V., Komar, T., Xiao, W., James, P., Robson, C., Xing, J., Barr, S. (2021) Towards an endto-end framework of CCTV-based urban traffic volume detection and prediction. Sensors (Switzerland), 21(2), paper 629, 1-23. DOI: 10.3390/s21020629.10.3390/s21020629 Search in Google Scholar

22. Prasad, D., Kapadni, K., Gadpal, A., Visave, M., Sultanpure, K. (2019) HOG, LBP and SVM based Traffic Density Estimation at Intersection. In: Proceedings of the 2nd IEEE Pune Section International Conference, MIT World Peace University-Pune, India, paper 9105731. Institute of Electrical and Electronics Engineers Inc. DOI: 10.1109/PuneCon46936.2019.9105731.10.1109/PuneCon46936.2019.9105731 Search in Google Scholar

23. Protschky, V., Wiesner, K., Feit, S. (2014) Adaptive traffic light prediction via Kalman filtering. In: Proceedings of the IEEE Intelligent Vehicles Symposium, Dearborn, June 2014, paper 6856394, 151-157. Institute of Electrical and Electronics Engineers Inc. DOI: 10.1109/IVS.2014.6856394.10.1109/IVS.2014.6856394 Search in Google Scholar

24. Pulugurta, S., Madhu, E., Kayitha, R. (2015) Fuzzy logic-based travel demand model to simulate public transport policies. Journal of Urban Planning and Development, 141(4), paper 04014044. DOI: 10.1061/(ASCE)UP.1943-5444.0000261.10.1061/(ASCE)UP.1943-5444.0000261 Search in Google Scholar

25. Rida, N., Ouadoud, M., Hasbi, A., Chebli, S. (2018) Adaptive traffic light control system using wireless sensors networks. In: Proceedings of the 5th International Congress on Information Science and Technology, Marrakech, October 2018, paper 8596620, 552-556. Institute of Electrical and Electronics Engineers Inc. DOI: 10.1109/CIST.2018.8596620.10.1109/CIST.2018.8596620 Search in Google Scholar

26. Seifnaraghi, N., Ebrahimi, S.G., Ince, E.A. (2009) Novel traffic lights signaling technique based on lane occupancy rates. In: Proceedings of the 24th International Symposium on Computer and Information Sciences, Guzelyurt, September 2009, paper 5291891, 592-596. Institute of Electrical and Electronics Engineers Inc. DOI: 10.1109/ISCIS.2009.5291891.10.1109/ISCIS.2009.5291891 Search in Google Scholar

27. Shepelev, V., Aliukov, S., Glushkov, A., Shabiev, S. (2020a) Identification of distinguishing characteristics of intersections based on statistical analysis and data from video cameras. J Big Data, 7 (46). DOI:10.1186/s40537-020-00324-7.10.1186/s40537-020-00324-7 Search in Google Scholar

28. Shepelev, V., Aliukov, S., Nikolskaya, K., Das, A., Slobodin, I. (2020b) The use of multi-sensor video surveillance system to assess the capacity of the road network. Transport and Telecommunication, 21(1), 15-31.10.2478/ttj-2020-0002 Search in Google Scholar

29. Tang, J., Zhang, X., Yin, W., Zou, Y., Wang, Y. (2020) Missing data imputation for traffic flow based on combination of fuzzy neural network and rough set theory. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations. (in press) DOI: 10.1080/15472450.2020.1713772.10.1080/15472450.2020.1713772 Search in Google Scholar

30. Wang, Z., Huang, J., Xiong, N.N., Zhou, X., Lin, X., Ward, T.L. (2020) A robust vehicle detection scheme for intelligent traffic surveillance systems in smart cities. IEEE Access, 8(9152951), 139299-139312. DOI: 10.1109/ACCESS.2020.3012995.10.1109/ACCESS.2020.3012995 Search in Google Scholar

31. Zakharov, D.A., Karmanov, D.S., Fadyushin, A.A., Chistyakov, A.N. (2018) Simulation modeling of traffic for various types of traffic lights regulation in conditions of intensive traffic of vehicles. Journal of Mechanical Engineering Research and Developments, 41(4), 58-61. DOI: 10.26480/jmerd.04.2018.58.61.10.26480/jmerd.04.2018.58.61 Search in Google Scholar

32. Zaki, M., Sayed, T., Tageldin, A., Hussein, M. (2013) Application of computer vision to diagnosis of pedestrian safety issues. Transportation Research Record, 2393, 75-84. DOI: 10.3141/2393-09.10.3141/2393-09 Search in Google Scholar

33. Zhang, Z., Liu, K., Gao, F., Li, X., Wang, G. (2016) Vision-based vehicle detecting and counting for traffic flow analysis. In: Proceedings of the International Joint Conference on Neural Networks, October 2016, Vancouver, July 2016, paper 7727480, 2267-2273. Institute of Electrical and Electronics Engineers Inc. DOI: 10.1109/IJCNN.2016.7727480.10.1109/IJCNN.2016.7727480 Search in Google Scholar

34. Zhou, B., Cao, J., Li, J. (2013) An adaptive traffic light control scheme and its implementation in WSN-based ITS. International Journal on Smart Sensing and Intelligent Systems, 6(4), 1559-1581. DOI: 10.21307/ijssis-2017-604.10.21307/ijssis-2017-604 Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo