1. bookVolumen 22 (2021): Heft 4 (November 2021)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1407-6179
Erstveröffentlichung
20 Mar 2000
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
access type Uneingeschränkter Zugang

Predicting the Fatigue Life of a Ball Joint

Online veröffentlicht: 20 Nov 2021
Seitenbereich: 453 - 460
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1407-6179
Erstveröffentlichung
20 Mar 2000
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Abstract

The technical conditions and service life of steering elements of vehicles are an important factor directly affecting road safety. Therefore, high reliability of such kind’s components is required. In the paper, on the basis of the stand test, the fatigue durability of a ball joint of a steering tie rod is determined. It is elaborated together with a prediction for the further number of cycles, enabling to determine the technical state of the tested component containing its service life. The aim of the article is to select an appropriate mathematical model with respect to describing the relationship between the moment of force and the fatigue cycles performed for the ball joint of a steering rod of a vehicle with a GVW above 3.5 tonnes, and identifying the model’s parameters. As a result, the limit number of loading cycles after which the examined joint does not meet safety requirements is estimated.

1. Baroiu, N., David, M., Susac, F. (2014) Study concerning the ball joint functionality of a vehicle steering system, The Annals of “Dunărea De Jos” University Of Galaţi Fascicle V, Technologies In Machine Building, 49-54. Search in Google Scholar

2. Burcham, M. N. (2017) Characterization and failure analysis of an automotive ball joint, J Fail. Anal. and Preven., 17, 262–274, DOI 10.1007/s11668-017-0240-4. Search in Google Scholar

3. Chow, G.C. (1995) Ekonometria, PWN, Warszawa. Search in Google Scholar

4. Chudzik, A., Warda, B. (2019) Effect of radial internal clearance on the fatigue life of the radial cylindrical roller bearing, Eksploatacja i Niezawodnosc – Maintenance and Reliability, 21(2), 211–219, http://dx.doi.org/10.17531/ein.2019.2.4.10.17531/ein.2019.2.4 Search in Google Scholar

5. Crolla, D. (2009) Automotive engineering: powertrain, chassis system and vehicle body. Search in Google Scholar

6. Geren, N., Akçalı, O. O., Bayramoğlu, M. (2017) Parametric design of automotive ball joint based on variable design methodology using knowledge and feature-based computer assisted 3D modelling, Engineering Applications of Artificial Intelligence, 66, 87-103.10.1016/j.engappai.2017.08.011 Search in Google Scholar

7. Hyspan, Quality Test Report, Summary Test Report Ball Joint Life Cycle Test Solar Plant Installations. Search in Google Scholar

8. Kashyzadeh, K. R. (2020) Effects of Axial and Multiaxial Variable Amplitude Loading Conditions on the Fatigue Life Assessment of Automotive Steering Knuckle, Journal of Failure Analysis and Prevention, 1-9. Search in Google Scholar

9. Kozłowski, E. (2015) Analiza i identyfikacja szeregów czasowych, Politechnika Lubelska Search in Google Scholar

10. Kozłowski, E., Mazurkiewicz, D., Żabiński, T., Prucnal, S., Sęp, J. (2019) Assessment model of cutting tool condition for real-time supervision system, Eksploatacja i Niezawodnosc – Maintenance and Reliability, 21(4), 679–685, http://dx.doi.org/10.17531/ein.2019.4.18.10.17531/ein.2019.4.18 Search in Google Scholar

11. Michalak, R., Pietruszewski, R., & Pawelski, Z. (2011) Diagnostic simulation testing of the suspension system of an automotive vehicle, Archiwum Motoryzacji, 1, 205-214.10.5604/1234754X.1067037 Search in Google Scholar

12. Muscă, I., Românu, I. C., Gagea, A. (2020) Preliminary study of friction in automotive ball joints, IOP Conference Series: Materials Science and Engineering, 724(1), 012020. IOP Publishing.10.1088/1757-899X/724/1/012020 Search in Google Scholar

13. Rutci, A., Eren, F.S. (2018) Investigation of Suspension Ball Joint Pull Out Force Based on FEA Method and Experimental Study, The 6th International Symposium on Innovative Technologies in Engineering and Science 09-11, 1002-1009.10.33793/acperpro.01.01.165 Search in Google Scholar

14. Servotest, Ball Joint Test Systems. Search in Google Scholar

15. Szymczak, T., Brodecki, A., Kowalewski, Z.L., Lasota, P. (2018) Experimental assessment of fatigue durability of steering rod tip, Transport Samochodowy, 2, 63-72. Search in Google Scholar

16. Szymczak, T., Brodecki, A., Eminger, A., Kowalewski, Z. L., Rudnik, D. (2016) Experimental Assessment of Ball Joints Operation Using Servo-Hydraulic Testing Systems. In Solid State Phenomena, Trans Tech Publications Ltd., 240, 232-237. Search in Google Scholar

17. Welfe, A. (2003) Ekonometria, PWE. Search in Google Scholar

18. Zaharia, S. M. (2019) The methodology of fatigue lifetime prediction and validation based on accelerated reliability testing of the rotor pitch links, Eksploatacja i Niezawodnosc – Maintenance and Reliability, 21(4), 638–644, http://dx.doi.org/10.17531/ein.2019.4.13.10.17531/ein.2019.4.13 Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo