1. bookVolumen 14 (2021): Heft 1 (April 2021)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2601-5773
Erstveröffentlichung
30 Dec 2018
Erscheinungsweise
2 Hefte pro Jahr
Sprachen
Englisch
access type Uneingeschränkter Zugang

An Analysis of Manufacturing Precision of Involute Worms Using a Kinematical Model

Online veröffentlicht: 05 Aug 2021
Seitenbereich: 44 - 50
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2601-5773
Erstveröffentlichung
30 Dec 2018
Erscheinungsweise
2 Hefte pro Jahr
Sprachen
Englisch
Abstract

The manufacturing precision of involute worms constitutes a major requirement. On the one hand, the worm constitutes the input element of the worm drive; secondly, the involute helical surface is the basic surface of an involute worm-hob. This paper presents an analytic comparison between the involute surfaces obtained using theoretical equations, kinematic simulation of the cutting and the surface charged with errors. The surface error is considered the distance along the normal direction to the theoretical surface, measured between this and the surface charged with simulated manufacturing errors. The main sources of errors are considered the center-error of the edge plane, the edge profile error and deviation of the axial feed direction from the axis of the worm. The theoretical results allow us to conclude that the influence of the edge profile error is the largest. It is followed by the parallelism error between the feed direction and the axis of the worm, and finally, the center error of the tool edge.

[1] Dudas I., Varga G., Banyai K.: Holonic manufacturing system for production of different sophisticated surfaces. Proceedings of the IASTED International Conference on Modelling, Simulation and Optimization (2004) 72–75. Search in Google Scholar

[2] Balajti Zs.: Examination and adjustment of the bearing pattern in case of helicoid drive. 8th CIRP Conference on High Performance Cutting, Budapest, Hungary, June 25-27. 2018. Procedia CIRP, 77 (2018) 267–270. Search in Google Scholar

[3] Balajti Zs., Dudás I.: The Monge Theorem and Its Application in Engineering Practice. The International Journal of Advanced Manufacturing Technology. Article 9763, Springer, London (2016). https://doi.org/10.1007/s00170-016-9763-110.1007/s00170-016-9763-1 Search in Google Scholar

[4] Dudas I.: The theory and practice of worm gear drives. Penton Press, London, 2000. Search in Google Scholar

[5] I Tsay C. B., Tseng J. T.: Undercutting and contact characteristics of cylindrical gears with curvilinear shaped teeth generated by hobbing. Journal of Mechanical Design, 128/3. (2006) 634–643. Search in Google Scholar

[6] Mohan L. V.: Geometrical aspects of double enveloping worm gear drive. Mechanism and Machine Theory, 44, (2009) 2053–2065. Search in Google Scholar

[7] Radzevich S. P.: A way to improve the accuracy of hobbed involute gears. Journal of Mechanical design, 129/10. (2007), 1076–1085. https://doi.org/10.1115/1.276191910.1115/1.2761919 Search in Google Scholar

[8] Radzevich S. P.: Investigation of the tooth geometry of a hob for manufacturing of involute gears (in Tool-in-Use References System). Journal of Manufacturing Science and Engineering, 129/4. (2007), 750–759.10.1115/1.2738096 Search in Google Scholar

[9] KG Stock Gears: Gear Technical Data. 5.7 Precision of Spur and Helical gears. Letöltés: 2021. 04. 06. https://www.kggear.co.jp/en/wp-content/themes/bizvektor-global-edition/pdf/5.7_Precision-of-Spur-and-Helical-gears_TechnicalData_KGSTOCKGEARS.pdf. Search in Google Scholar

[10] Cseke V.: A valószínűségszámítás alapjai. Dacia Könyvkiadó, Kolozsvár, 1982. Search in Google Scholar

[11] Drăghici G.: Tehnologia Construcțiilor de mașini. E.D.P., Bukarest, 1985. Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo