1. bookVolumen 14 (2021): Heft 1 (April 2021)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2601-5773
Erstveröffentlichung
30 Dec 2018
Erscheinungsweise
2 Hefte pro Jahr
Sprachen
Englisch
access type Uneingeschränkter Zugang

Control of an Electric Vehicle Hybrid Energy Storage System

Online veröffentlicht: 05 Aug 2021
Seitenbereich: 77 - 88
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2601-5773
Erstveröffentlichung
30 Dec 2018
Erscheinungsweise
2 Hefte pro Jahr
Sprachen
Englisch
Abstract

In electric vehicles battery life can be prolonged by using hybrid energy storage systems (HESS ), which combine high energy density batteries with supercapacitors, characterized by high power density. This paper deals with the control of electronic power converters from an active parallel HESS. The load of the HESS is the electrical motor drive of an electric vehicle. The interfaces between the DC-link and the power sources are four-phase bidirectional DC-DC converters driven in current control mode, based on the current references supplied by an active parallel HESS power distribution algorithm. We present a rule-based fuzzy energy management algorithm for a HESS powered electric vehicle and its simulation in MATLAB/Simulink® environment using the Quasi-Static Simulation (QSS ) and Fuzzy Logic toolboxes. Also, simulation results in driving and regenerative braking operation modes of the electric vehicle are presented.

[1] S. M. Lukic, J. Cao, R. C. Bansal, F. Rodriguez, A. Emadi: Energy Storage Systems For Automotive Applications. IEEE Trans. on Industrial Electronics, 55/6. (2008) 2258–2267. https://doi.org/10.1109/TIE.2008.91839010.1109/TIE.2008.918390 Search in Google Scholar

[2] Ferencz J., Kelemen A., Imecs M.: Energy management of a hybrid energy storage system. (in Hungarian) In: XXI. International Online Multi-Conference of Energetics and Electrical Engineering & Computer Science ENELKO & SzamOkt 2020. EMT, Cluj-Napoca, 2020. 40–45. https://ojs.emt.ro/index.php/enelko-szamokt/article/view/315/255 Search in Google Scholar

[3] H. Yu, F. Cheli, F. Castelli-Dezza, D. Cao, F.-Y. Wang: Multiobjective Optimal Sizing and Energy Management of Hybrid Energy Storage System for Electric Vehicles. https://www.researchgate.net/publication/322652476_Multi-objective_Optimal_Sizing_and_Energy_Management_of_Hybrid_Energy_Storage_System_for_Electric_Vehicles Search in Google Scholar

[4] Maarten J. van Jaarsveld, Rupert Gouws: An active hybrid energy storage system utilizing a fuzzy logic rule-based control strategy. World Electric Vehicle Journal, 2020/4. 1–24. https://doi.org/10.3390/wevj1102003410.3390/wevj11020034 Search in Google Scholar

[5] Zhang Q., Deng W., Zhang S., Wu J.: A rule based energy management system of experimental battery/supercapacitor hybrid energy storage system for electric vehicles. Journal of Control Science and Engineering, 2016. 1–17. https://doi.org/10.1155/2016/682826910.1155/2016/6828269 Search in Google Scholar

[6] Guzzella L., Amsutz A.: The QSS Toolbox Manual. Swiss Federal Institute of Technology Zurich (ETH Zürich), Measurement and Control Laboratory, June 2005. Search in Google Scholar

[7] Ehsani M., Gao Y., Gay E. S., Emadi A.: Modern Electric, Hybrid Electric, and Fuel Cell Vehicles. 4. Ed., CRC Press, Boca Raton, London, New York, Washington D.C., 2005. 21–34.10.1201/9781420037739 Search in Google Scholar

[8] J. Cao, A. Emadi: A New Battery/UltraCapacitor Hybrid Energy Storage System for Electric, Hybrid, and Plug-In Hybrid Electric Vehicles. IEEE Transactions on Power Electronics, 27/1. (2012) 122–132. https://doi.org/10.1109/TPEL.2011.215120610.1109/TPEL.2011.2151206 Search in Google Scholar

[9] Ferencz J., Kelemen A., Imecs M.: Control of power electronic converters from an active parallel hybrid energy storage system. (in Hungarian) In: International Online Multi-Conference of Energetics and Electrical Engineering & Computer Science ENELKO & SzamOkt 2020. EMT, Cluj-Napoca, 2020. 34–39. https://ojs.emt.ro/index.php/enelko-szamokt/article/view/316/254 Search in Google Scholar

[10] Yu W., Lai J. S.: Ultra high efficiency bidirectional DC-DC converter with multi-frequency pulse width modulation. In: Proceedings: APEC 2008 Twenty- third Annual IEEE Applied Power Electronics Conference and Exposition, Austin, Texas, 2008. Piscataway, N.J., IEEE, 1079–1084. https://doi.org/10.1109/APEC.2008.452285610.1109/APEC.2008.4522856 Search in Google Scholar

[11] Kanta S., Plangklang B., Subsingha W.: Design of a Bi-directional DC-DC 4 Phase Interleave Converter for PV Applications. Energy Procedia, 56. (2014) 604–609. https://doi.org/10.1016/j.egypro.2014.07.19910.1016/j.egypro.2014.07.199 Search in Google Scholar

[12] Dulout J., Jammes B., Séguier L., Alonso C.: Control and design of a hybrid energy storage system. In: Proceedings of the 2015 17th Conference on Power Electronics and Applications (EPE ‘15 ECCE- EUROPE 2015), Geneva, Switzerland, 2015. Institute of Electrical and Electronics Engineers (IEEE), 2016. 1–9. Search in Google Scholar

[13] Manandhar U., Ukil A., Kollimalla S. K., Gooi H. B. L.: Application of HESS for PV system with modified control strategy. In: 2015 IEEE Innovative Smart Grid Technologies - Asia (ISGT ASIA), Bangkok, Thailand, IEEE, 2015. 1–6. https://doi.org/10.1109/ISGT-Asia.2015.738707810.1109/ISGT-Asia.2015.7387078 Search in Google Scholar

[14] M. B. Camara, H. Gualous, F. Gustin, A. Berthon: Design and New Control of DC/DC Converters to Share Energy Between Supercapacitors and Batteries in Hybrid Vehicles. IEEE Transactions on Vehicular Technology, 57/5.(2008) 1–15. https://doi.org/10.1109/TVT.2008.91549110.1109/TVT.2008.915491 Search in Google Scholar

[15] Wilson D. G.: Bicycling Science. 3. ed. MIT Press, Cambridge, Massachusetts, London, England, 2004. 188–209. Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo