1. bookVolumen 8 (2018): Edición 4 (October 2018)
Detalles de la revista
License
Formato
Revista
eISSN
2449-6499
Primera edición
30 Dec 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés
access type Acceso abierto

On the Topological Properties of the Certain Neural Networks

Publicado en línea: 17 May 2018
Volumen & Edición: Volumen 8 (2018) - Edición 4 (October 2018)
Páginas: 257 - 268
Recibido: 13 Jan 2018
Aceptado: 08 Mar 2018
Detalles de la revista
License
Formato
Revista
eISSN
2449-6499
Primera edición
30 Dec 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés
Abstract

A topological index is a numeric quantity associated with a network or a graph that characterizes its whole structural properties. In [Javaid and Cao, Neural Computing and Applications, DOI 10.1007/s00521-017-2972-1], the various degree-based topological indices for the probabilistic neural networks are studied. We extend this study by considering the calculations of the other topological indices, and derive the analytical closed formulas for these new topological indices of the probabilistic neural network. Moreover, a comparative study using computer-based graphs has been carried out first time to clarify the nature of the computed topological descriptors for the probabilistic neural networks. Our results extend some known conclusions.

Keywords

[1] J. Cao, R. Li, Fixed-time synchronization of delayed memristor-based recurrent neural networks, Sci. China. Inf. Sci. 60(3) (2017) 032201.10.1007/s11432-016-0555-2Search in Google Scholar

[2] Y. Huo, J. B-Liu, J. Cao, Synchronization analysis of coupled calcium oscillators based on two regular coupling schemes, Neurocomputing 165 (2015) 126-132.10.1016/j.neucom.2015.03.001Search in Google Scholar

[3] Z. Guo, J. Wang, Z. Yan, Attractivity analysis of memristor-based cellular neural networks with time-varying delays, IEEE Trans. Neural Netw. Learn. Syst. 25 (2013) 704-717.10.1109/TNNLS.2013.228055624807948Search in Google Scholar

[4] J. Devillers, A. T. Balaban, Topological Indices and Related Descriptors in QSAR and QSPR, Gordon Breach, Amsterdam 1999.10.1201/9781482296945Search in Google Scholar

[5] M. Karelson, Molecular Descriptors in QSAR/QSPR, Wiley, New York, 2000.Search in Google Scholar

[6] M. Javaid, J. B-Liu, M. A. Rehman, S. H. Wang, On the Certain Topological Indices of Titania Nanotube TiO2[m,n], Zeitschrift f¨ur Naturforschung A 72(7) 2017 647-654.10.1515/zna-2017-0101Search in Google Scholar

[7] M. Imran, S. Hafi, W. Gao, M. R. Farahani, On topological properties of sierpinski networks, Chaos, Solitons and Fractals 98 (2017) 199-204.10.1016/j.chaos.2017.03.036Abierto DOISearch in Google Scholar

[8] S. H. Wang, B. Wei, Multiplicative Zagreb indices of k-trees, Discrete Appl. Math. 180 (2015) 168-175.10.1016/j.dam.2014.08.017Search in Google Scholar

[9] M. Javaid, Jinde Cao, Computing topological indices of probabilistic neural network, Neural Comput. Applic. (2017). doi:10.1007/s 00521-017-2972.Search in Google Scholar

[10] W. Gao, M. K. Siddiqui, Molecular descriptors of nanotube, oxide, silicate, and triangulene networks, Journal of Chemistry 2017 (2017).10.1155/2017/6540754Search in Google Scholar

[11] J. B-Liu, S. H.Wang, C.Wang, S. Haya, Further results on computation of topological indices of certain networks, IET Control Theory & Applications 11(13) (2017) 2065-2071. 10.1049/iet-cta.2016.1237Search in Google Scholar

[12] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, Macmillan, New York, 1976.10.1007/978-1-349-03521-2Search in Google Scholar

[13] H. Wiener, Structural determination of the paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17-20.10.1021/ja01193a005Search in Google Scholar

[14] O. Ivanciuc, T. S. Balaban, A. T. Balaban, Reciprocal distance matrix, related local vertex invariants and topological indices, J. Math. Chem. 12 (1993) 309-318.10.1007/BF01164642Abierto DOISearch in Google Scholar

[15] R. Todeschini, V. Consonni, Molecular descriptors for chemoinformatics, vol I, vol II. Wiley-VCH, Weinheim (2009) 934-938.10.1002/9783527628766Search in Google Scholar

[16] K. Xu, K. C. Das, N. Trinajstic, The Harary Index of a Graph, Springer Briefs in Mathematical Methods, DOI:10.1007/97836624584335.10.1007/97836624584335Abierto DOISearch in Google Scholar

[17] I. Gutman, Selected properties of the Schultz molecular topological index, J. Chem. Inf. Comput. Sci. 34 (1994) 1087-1089.10.1021/ci00021a009Abierto DOISearch in Google Scholar

[18] H. Narumi, M. Hatayama, Simple topological index. a newly devised index charaterizing the topological nature of structural isomers of saturated hydrocarbons, Mem. Fac. Eng. Hokkaido Univ. 16 (1984) 209-214.Search in Google Scholar

[19] D. J. Klein, V. R. Rosenfeld, The Narumi-Katayama degree-product index and the degreeproduct polynomial, in: I. Gutman, B. Furtula (Eds.), Novel Molecular Structure Descriptors- Theory and Applications II, Univ. Kragujevac, Kragujevac (2010) 79-90.Search in Google Scholar

[20] I. Gutman, Some Properties of the Wiener Polynomials, Graph Theory Notes New York 25 (1993) 13-18.Search in Google Scholar

[21] C. Wang, J.-B.Liu, S. Wang, Sharp upper bounds for multiplicative Zagreb indices of bipartite graphs with given diameter, Discrete Appl. Math. 227 (2017) 156-165.10.1016/j.dam.2017.04.037Search in Google Scholar

[22] I. Gutman, N. Trinajstić, Graph theory and molecular orbits. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.10.1016/0009-2614(72)85099-1Abierto DOISearch in Google Scholar

[23] B. Furtula, I. Gutman, Z. Kovijani´c Vuki´cevi´c, G. Lekishvili, G. Popivoda, On an old/new degreebased topological index, Sciences mathematiques 40 (2015) 19-31.Search in Google Scholar

[24] S. Mukwembi, A note on diameter and the degree sequence of a graph, Appl. Math. Lett. 25 (2012) 175-178.10.1016/j.aml.2011.08.010Abierto DOISearch in Google Scholar

[25] R. Todeschini, D. Ballabio, V. Consonni, Novel molecular descriptors based on functions of new vertex degrees, in: I. Gutman, B. Furtula (Eds.), Novel Molecular Structure Descriptors Theory and Applications I, Univ. Kragujevac, Kragujevac (2010) 72-100.Search in Google Scholar

[26] R. Todeschini, V. Consonni, New local vertex invariants and molecular descriptors based on functions of the vertex degrees, MATCH Commun. Math. Comput. Chem. 64 (2010) 359-372.Search in Google Scholar

[27] S. Wang, B. Wei, Multiplicative Zagreb indices of k-trees, Discrete Appl. Math. 180 (2015) 168-175.10.1016/j.dam.2014.08.017Search in Google Scholar

[28] O. Ivanciuc, QSAR comparative study of Wiener descriptors for weighted molecular graphs, J. Chem. Inf. Comput. Sci. 40 (2000) 1412-1422.10.1021/ci000068y11128100Abierto DOISearch in Google Scholar

[29] O. Ivanciuc, T. Ivanciuc, AT. Balaban, The complementary distance matrix, a new molecular graph metric, ACH Models Chem. 137 (2000) 57-82.Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo