1. bookVolumen 16 (2022): Edición 3 (September 2022)
Detalles de la revista
Formato
Revista
eISSN
2300-5319
Primera edición
22 Jan 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés
access type Acceso abierto

Analytical and Numerical Analysis of Injection Pump (Stepped) Shaft Vibrations Using Timoshenko Theory

Publicado en línea: 01 Jul 2022
Volumen & Edición: Volumen 16 (2022) - Edición 3 (September 2022)
Páginas: 215 - 224
Recibido: 29 Mar 2022
Aceptado: 12 May 2022
Detalles de la revista
Formato
Revista
eISSN
2300-5319
Primera edición
22 Jan 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés
Abstract

The free transverse vibrations of shafts with complex geometry are studied using analytical methods and numerical simulations. A methodology is proposed for evaluating the results of a natural transverse vibration analysis as generated by finite element (FE) models of a shaft with compound geometry. The effectiveness of the suggested approach is tested using an arbitrarily chosen model of the injection pump shaft. The required analytical models of the transverse vibrations of stepped shafts are derived based on the Timoshenko thick beam theory. The separation of variables method is used to find the needed solutions to the free vibrations. The eigenvalue problem is formulated and solved by using the FE representation for the shaft and for each shaft-simplified model. The results for these models are discussed and compared. Additionally, the usefulness of the Myklestad–Prohl (MP) method in the field of preliminary analysis of transverse vibration of complex shaft systems is indicated. It is important to note that the solutions proposed in this paper could be useful for engineers dealing with the dynamics of various types of machine shafts with low values of operating speeds.

Keywords

1. de Silva C. Vibration and Shock Handbook. Taylor & Francis. Boca Raton. 2005.10.1201/9781420039894 Search in Google Scholar

2. Rao SS, Vibration of Continuous Systems. Wiley. Hoboken. 2007.10.1002/9780470117866 Search in Google Scholar

3. Ngo VT, Xie D, Xiong Y, Zhang H, Yang Y. Dynamic analysis of a rig shafting vibration based on finite element. Frontiers of Mechanical Engineering. 2013;8:244-251.10.1007/s11465-013-0264-8 Search in Google Scholar

4. Noga S. Dynamical analysis of the low – power electrical engine rotor. 10 European Mechanics of Materials Conference (EMMC10). Kazimierz Dolny. June 11-14. 2017:457-465. Search in Google Scholar

5. Noga S, Bogacz R. Free vibration of the Timoshenko beam interacting with the Winkler foundation. Symulacja w Badaniach i Rozwoju. 2011;2(4):209-223. Search in Google Scholar

6. Friswell M, Mottershead J. Finite Element Model Updating in Structural Dynamics. Kluwer Academic Publishers. Dordrecht. 1995.10.1007/978-94-015-8508-8 Search in Google Scholar

7. Noga S. Analytical and Numerical Problems of Systems with Circular Symmetry Vibrations. Publishing House of Rzeszow University of Technology. Rzeszow. Poland (in Polish). 2015. Search in Google Scholar

8. Lee U, Jang I. Spectral element model for the vibration of a spinning Timoshenko shaft. Journal of Mechanics of Materials and Structures. 2012;7(2):145-164.10.2140/jomms.2012.7.145 Search in Google Scholar

9. Shahgholi M, Khadem SE, Bab S. Free vibration analysis of a nonlinear slender rotating shaft with simply support conditions. Mechanism and Machine Theory. 2014;82:128-140.10.1016/j.mechmachtheory.2014.08.005 Search in Google Scholar

10. Kaliski S. Vibration and Waves in Solids. IPPT PAN. Warsaw (in Polish). 1966. Search in Google Scholar

11. Auciello NM. Vibrations of Timoshenko beams on two parameter elastic soil. Engineering Transactions. 2008; 56(3):187-200. Search in Google Scholar

12. Majkut L. Free and forced vibrations of Timoshenko beams described by single difference equation. Journal of Theoretical and Applied Mechanics. 2009;47(1):193-210. Search in Google Scholar

13. Chan KT. Wang XQ. Free vibration of a Timoshenko beam partially loaded with distributed mass. Journal of Sound and Vibration. 1997;206:353-369.10.1006/jsvi.1997.1124 Search in Google Scholar

14. Awrejcewicz J, Krysko AV, Pavlov SP, Zhigalov MV, Krysko VA. Chaotic dynamics of size dependent Timoshenko beams with functionally graded properties along their thickness. Mechanical Systems and Signal Procesing. 2017;93:415-430.10.1016/j.ymssp.2017.01.047 Search in Google Scholar

15. Zhao TY, Cui YS, Pan HG, Yuan HQ, Yang J. Free vibration analysis of a functionally graded graphene nanoplatelet reinforced disk-shaft assembly with whirl motion. International Journal of Mechanical Sciences. 2021;197:106335.10.1016/j.ijmecsci.2021.106335 Search in Google Scholar

16. Zhao TY, Cui YS, Wang YQ, Pan HG. Vibration characteristics of graphene nanoplatelet reinforced disk-shaft rotor with eccentric mass. Mechanics of Advanced Materials and Structures. 2021. https://doi.org/10.1080/15376494.2021.1904525. Search in Google Scholar

17. Zhao TY, Jiang LP, Pan HG, Yang J, Kitipornchai S. Coupled free vibration of a functionally graded pre-twisted blade-shaft system reinforced with graphene nanoplatelets. Composite Structures. 2021; 262:113362.10.1016/j.compstruct.2020.113362 Search in Google Scholar

18. Zhao TY, Jiang LP, Yu YX, Wang YQ. Study on theoretical modeling and mechanical performance of a spinning porous graphene nano-platelet reinforced beam attached with double blades. Mechanics of Advanced Materials and Structures. https://doi.org/10.1080/15376494.2022.2035862; 2022. Search in Google Scholar

19. Awrejcewicz J, Krysko VA, Pavlov SP, Zhigalov MV, Kalutsky LA, Krysko VA. Thermoelastic vibrations of a Timoshenko microbeam based on the modified coupe stress theory. Nonlinear Dynamics. 2020;99:919-943.10.1007/s11071-019-04976-w Search in Google Scholar

20. Qatu MS, Iqbal J. Transverse vibration of a two-segment cross-ply composite shafts with a lumped mass. Composite Structures. 2010;92:1126-1131.10.1016/j.compstruct.2009.10.007 Search in Google Scholar

21. Arab SB, Rodrigues JD, Bouaziz S, Haddar M. Dynamic analysis of laminated rotors using a layerwise theory. Composite Structures. 2017;182:335-345.10.1016/j.compstruct.2017.09.033 Search in Google Scholar

22. Myklestad NO. A new method of calculating natural modes of coupled bending vibration of airplane wings and other types of beams. Journal of Aeronautical Science. 1944;11:153-162.10.2514/8.11116 Search in Google Scholar

23. Wu JS, Yang IH. Computer method for torsion and flexure coupled forced vibration of shafting system with damping. Journal of Sound and Vibration. 1995;180. (3):417-435.10.1006/jsvi.1995.0088 Search in Google Scholar

24. Yang M, Zhou X, Zhang W, Ye J, Hu Y. A modified transfer matrix method for bending vibration of CFRP/Steel composite transmission shafting. Archive of Applied Mechanics. 2020;90:603-614.10.1007/s00419-019-01628-8 Search in Google Scholar

25. Farshidianfar A, Soheili S, Abachizadeh M. Flexural vibration of Timoshenko beams. using distributed lumped modeling technique. Aerospace Mechanics Journal. 2008;4(1):75-84. Search in Google Scholar

26. Soheili S. Abachizadeh M. Flexural vibration of multistep rotating Timoshenko shafts using hybrid modeling and optimization techniques. Journal of Vibration and Control. https://doi.org/10.1177/10775463211072406; 2022. Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo