1. bookVolumen 16 (2022): Edición 3 (September 2022)
Detalles de la revista
Formato
Revista
eISSN
2300-5319
Primera edición
22 Jan 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés
access type Acceso abierto

Simulation Evaluation of the Influence of Selected Geometric Parameters on the Operation of the Pneumatic Braking System of a Trailer with a Differential Valve

Publicado en línea: 01 Jul 2022
Volumen & Edición: Volumen 16 (2022) - Edición 3 (September 2022)
Páginas: 233 - 241
Recibido: 10 Apr 2022
Aceptado: 10 Jun 2022
Detalles de la revista
Formato
Revista
eISSN
2300-5319
Primera edición
22 Jan 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés
Abstract

This article presents simulation models of trailer air brake systems in configurations without a valve and with a differential valve, thus demonstrating the rationale for using a valve to improve system performance. Simplified mathematical models using the lumped method for systems without and with a differential valve are presented. The proposed valve can have two states of operation depending on the configuration of relevant parameters. These parameters can include the length of the control pipe, the throughput between chambers in the control part of the valve and the forcing rise time. Based on the calculations, it was found that the differential valve with large control pipe lengths can reduce the response time of the actuator by 42.77% relative to the system without the valve. In the case of transition of the valve to the tracking action, this time increases only by 9.93%. A force rise time of 0.5 s causes the transition of the valve from the accelerating action to the tracking action, with 9.23% delay relative to the system without a valve. The calculations can be used in the preliminary assessment of the speed of operation of pneumatic braking systems and in the formulation of guidelines for the construction of a prototypical differential valve. In conclusion, it is suggested to use a mechatronic system enabling smooth adjustment of the flow rate between chambers of the control system of the differential valve.

Keywords

1. Kamiński Z, Kulikowski K. Determination of the functional and service characteristics of the pneumatic system of an agricultural tractor with mechanical brakes using simulation methods. Eksploatacja i Niezawodność - Maintenance and Reliability. 2015;17(3):355–64.10.17531/ein.2015.3.5 Search in Google Scholar

2. Regulation No 13 of the Economic Commission for Europe of the United Nations (UN/ECE) — Uniform provisions concerning the approval of vehicles of categories M, N and O with regard to braking [Internet]. Official Journal of the European Union. 2015 [cited 2022 Apr 3]. Available from: http://data.europa.eu/eli/reg/2016/194/oj Search in Google Scholar

3. Krichel S V, Sawodny O. Dynamic modeling of pneumatic transmission lines in Matlab/Simulink. In: International Conference on Fluid Power and Mechatronics - 17-20 Aug 2011, Beijing, China. Beijing, China: IEEE; 2011. p. 24–9.10.1109/FPM.2011.6045723 Search in Google Scholar

4. Kulesza Z, Siemieniako F, Mikołajczyk B. Modelowanie zaworu przekaźnikowo-sterującego. Pneumatyka. 2008;1:31–5. Search in Google Scholar

5. Kamiński Z. Mathematical modelling of the trailer brake control valve for simulation of the air brake system of farm tractors equipped with hydraulically actuated brakes. Eksploatacja i Niezawodność - Maintenance and Reliability. 2014;16(4):637–43. Search in Google Scholar

6. Kulesza Z, Siemieniako F. Modeling the air brake system equipped with the brake and relay valves. Zeszyty Naukowe. 2010;24(96): 5–11. Search in Google Scholar

7. Beater P. Pneumatic Drives. System Design, Modelling and Control. Springer; 2007.10.1007/978-3-540-69471-7 Search in Google Scholar

8. Miatluk M, Avtuszko F. Dinamika pnievmaticeskich i gidravliceskich privodov avtomobilej. M. Maszinostrojenije; 1980. 231 p. Search in Google Scholar

9. Szpica D. Modeling of the operation of a pneumatic differential valve increasing the efficiency of pneumatic brake actuation of road trains. In: Transport Means - Proceedings of the International Conference. 2018. p. 151–6. Search in Google Scholar

10. Mystkowski A. Zastosowanie zaworów różniczkujących w pneumatycznych układach napędowych. Pneumatyka. 2004;3:21–3. Search in Google Scholar

11. Patil JN, Palanivelu S, Jindal AK. Mathematical model of dual brake valve for dynamic characterization. In: SAE Technical Papers. SAE International; 2013.10.4271/2013-26-0150 Search in Google Scholar

12. Jing Z, He R. Electronic structural improvement and experimental verification of a tractor-semitrailer air brake system. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 2020 Jul 1;234(8):2154–61.10.1177/0954407019899794 Search in Google Scholar

13. Yang Z, Cheng X, Zheng X, Chen H. Reynolds-Averaged Navier-Stokes Equations Describing Turbulent Flow and Heat Transfer Behavior for Supercritical Fluid. Journal of Thermal Science. 2021;30(1).10.1007/s11630-020-1339-6 Search in Google Scholar

14. Matyushenko AA, Garbaruk A V. Adjustment of the k-ω SST turbulence model for prediction of airfoil characteristics near stall. In: Journal of Physics: Conference Series. 2016.10.1088/1742-6596/769/1/012082 Search in Google Scholar

15. Yu W, Yang W, Zhao F. Investigation of internal nozzle flow, spray and combustion characteristics fueled with diesel, gasoline and wide distillation fuel (WDF) based on a piezoelectric injector and a direct injection compression ignition engine. Applied Thermal Engineering. 2017;114.10.1016/j.applthermaleng.2016.12.034 Search in Google Scholar

16. Michalcová V, Kotrasová K. The numerical diffusion effect on the cfd simulation accuracy of velocity and temperature field for the application of sustainable architecture methodology. Sustainability (Switzerland). 2020;12(23):10173.10.3390/su122310173 Search in Google Scholar

17. Cvetkovic D, Cosic I, Subic A. Improved performance of the electromagnetic fuel injector solenoid actuator using a modelling approach. International Journal of Applied Electromagnetics and Mechanics. 2008;10.3233/JAE-2008-939 Search in Google Scholar

18. Szpica D, Mieczkowski G, Borawski A, Leisis V, Diliunas S, Pilkaite T. The computational fluid dynamics (CFD) analysis of the pressure sensor used in pulse-operated low-pressure gas-phase solenoid valve measurements. Sensors. 2021;21(24):8287.10.3390/s21248287870704734960381 Search in Google Scholar

19. Subramanian SC, Darbha S, Rajagopal KR. Modeling the pneumatic subsystem of an s-cam air brake system. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME. 2004;126(1):36–46.10.1115/1.1666893 Search in Google Scholar

20. Kumar EA, Gautam V, Subramanian SC. Performance evaluation of an electro-pneumatic braking system for commercial vehicles. In: ICPCES 2012 - 2012 2nd International Conference on Power, Control and Embedded Systems. 2012.10.1109/ICPCES.2012.6508102 Search in Google Scholar

21. Afshari A, Specchia S, Shabana AA, Caldwell N. A train air brake force model: Car control unit and numerical results. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. 2013;227(1):38–55.10.1177/0954409712447231 Search in Google Scholar

22. Aboubakr AK, Volpi M, Shabana AA, Cheli F, Melzi S. Implementation of electronically controlled pneumatic brake formulation in longitudinal train dynamics algorithms. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics. 2016;230(4):505–26.10.1177/1464419316628764 Search in Google Scholar

23. Kamiński Z. A simplified lumped parameter model for pneumatic tubes. Mathematical and Computer Modelling of Dynamical Systems. 2017;23(5):523–35.10.1080/13873954.2017.1280512 Search in Google Scholar

24. Iwaszko J. Wymiana ciepła podczas opróżniania zbiornika. Zeszyty Naukowe Politechniki Łódzkiej, Cieplne Maszyny Przepływowe. 1988;93:12–21. Search in Google Scholar

25. Grymek S, Kiczkowiak T. Conversion of the sonic conductance C and the critical pressure ratio b into the airflow coefficient μ. Journal of Mechanical Science and Technology. 2005;19(9):1706–10.10.1007/BF02984182 Search in Google Scholar

26. Yang WY, Cao W, Chung T-S, Morris J. Applied Numerical Methods Using MATLAB®. Applied Numerical Methods Using MATLAB®. Wiley & Sons; 2020. 1–502 p. Search in Google Scholar

27. Shamdani AH, Shameki AH, Basharhagh MZ, Aghanajafi S. Modeling and simulation of a diesel engine common rail injector in Matlab/Simulink. In: 14 th Annual (International) Mechanical Engineering Conference – May 2006 Isfahan University of Technology, Isfahan, Iran. 2006. p. 7. Search in Google Scholar

28. Demarchi A, Farçoni L, Pinto A, Lang R, Romero R, Silva I. Modelling a solenoid’s valve movement. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2018.10.1007/978-3-030-00308-1_24 Search in Google Scholar

29. Kamiński Z. Experimental and numerical studies of mechanical subsystem for simulation of agricultural trailer air braking systems. International Journal of Heavy Vehicle Systems. 2013;20(4):289–311.10.1504/IJHVS.2013.056802 Search in Google Scholar

30. Czaban J, Kamiński Z. Diagnosing of the agricultural tractor braking system within approval tests. Eksploatacja i Niezawodność - Maintenance and Reliability. 2012;14(4):319–26. Search in Google Scholar

31. Hung NB, Lim O, Yoon S. Effects of Structural Parameters on Operating Characteristics of a Solenoid Injector. In: Energy Procedia. 2017. p. 1771 – 1775.10.1016/j.egypro.2017.03.511 Search in Google Scholar

32. Plavec E, Ladisic I, Vidovic M. The impact of coil winding angle on the force of DC solenoid electromagnetic actuator. Advances in Electrical and Electronic Engineering. 2019;17(3):244–50.10.15598/aeee.v17i3.3338 Search in Google Scholar

33. Mieczkowski G, Szpica D, Borawski A, Diliunas S, Pilkaite T, Leisis V. Application of smart materials in the actuation system of a gas injector. Materials. 2021;14(22):6984.10.3390/ma14226984862196534832384 Search in Google Scholar

34. Mieczkowski G. Static electromechanical characteristics of piezoelectric converters with various thickness and length of piezoelectric layers. Acta Mechanica et Automatica. 2019;13(1):30–6.10.2478/ama-2019-0005 Search in Google Scholar

35. Liu Y. Modeling abstractions of vehicle suspension systems supporting the rigid body analysis. International Journal of Vehicle Structures and Systems. 2010;2(3–4):117–26.10.4273/ijvss.2.3-4.05 Search in Google Scholar

36. Liu Y. Constructing equations of motion for a vehicle rigid body model. SAE International Journal of Passenger Cars - Electronic and Electrical Systems. 2009;1(1):1289–97. Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo