1. bookVolumen 22 (2022): Edición 1 (January 2022)
Detalles de la revista
License
Formato
Revista
eISSN
2300-8733
Primera edición
25 Nov 2011
Calendario de la edición
4 veces al año
Idiomas
Inglés
access type Acceso abierto

Effects of Mulberry (Morus alba L.) Leaf Extracts on Growth, Immune Response, and Antioxidant Functions in Nile Tilapia (Oreochromis niloticus)

Publicado en línea: 04 Feb 2022
Volumen & Edición: Volumen 22 (2022) - Edición 1 (January 2022)
Páginas: 349 - 369
Recibido: 30 Mar 2021
Aceptado: 20 May 2021
Detalles de la revista
License
Formato
Revista
eISSN
2300-8733
Primera edición
25 Nov 2011
Calendario de la edición
4 veces al año
Idiomas
Inglés
Abstract

This study evaluates how white mulberry (Morus alba L.) leaf extracts affect the growth, antioxidant activity, and immune response in Nile tilapia Oreochromis niloticus. Mulberry leaf extracts were obtained through aqueous extraction (AE) and ethanol extraction (EE). Powder of mulberry leaf (PML) was added directly to feed and compared with the effects of feeds supplemented with the different extracts. Fish were divided into eight groups for an 8-week feeding trial where they were fed the basal diet or supplemented with 10% PML, 10% AE, 20% AE, 40% AE, 10% EE, 20% EE, or 40% EE. The inclusion of mulberry leaf extract obtained with either method showed better effects on fish growth performance, antioxidant activities and acid phosphatase activity (ACP) in serum, immune cytokine expression, and intestinal morphology as compared with controls or fish fed the 10% PML diet. The specific growth rate was significantly higher in the 10% AE, 10% EE, and 20% EE groups compared with all other groups (P<0.05). Catalase activity was significantly greater in most groups fed an extract, and in the 10% PML group, when compared with controls. Similarly, ACP, interleukin (IL)-1, and IL-2 expression was significantly increased in groups fed an extract, and in the 10% PML group, when compared with controls (P<0.05). IL- 1, IL-2, IL-10, and Toll-like receptor 2 expression was significantly greater in the 10% EE group than in the 10% PML and 10% AE groups (P<0.05). Villus length in the middle intestine was significantly increased in the 10% AE and 10% EE groups compared with controls and the 10% PML group (P<0.05). Thus, 10% mulberry leaf ethanol extract added to feed is recommended for enhancing the growth rate and health of cultured Nile tilapia.

Keywords

Ali S., Saha S., Kaviraj A. (2020). Fermented mulberry leaf meal as fishmeal replacer in the formulation of feed for carp Labeo rohita and catfish Heteropneustes fossilis – optimization by mathematical programming. Trop. Anim. Health Prod., 52: 839–849.Search in Google Scholar

Cai M., Mu L., Wang Z.L., Liu J.Y., Liu T.L., Wanapat M., Huang B.Z. (2019). Assessment of mulberry leaf as a potential feed supplement for animal feeding in P.R. China. Asian-Australas. J. Anim. Sci., 32: 1145–1152.Search in Google Scholar

Chan E.W., Lye P.Y., Wong S.K. (2016). Phytochemistry, pharmacology, and clinical trials of Morus alba. Chin. J. Nat. Med., 14: 17–30.Search in Google Scholar

Chen C., Mohamad R.U., Saikim F.H., Mahyudin A., Mohd N.N. (2021). Morus alba L. plant: bioactive compounds and potential as a functional food ingredient. Foods, 10(3).Search in Google Scholar

Chen L.Y., Cheng C.W., Liang J.Y. (2015). Effect of esterification condensation on the Folin- Ciocalteu method for the quantitative measurement of total phenols. Food Chem., 170: 10–15.Search in Google Scholar

Chen X., Sheng Z., Qiu S., Yang H., Jia J., Wang J., Jiang C. (2019). Purification, characterization and in vitro and in vivo immune enhancement of polysaccharides from mulberry leaves. PLoS One, 14(1): e208611.Search in Google Scholar

Choi J., Kang H.J., Kim S.Z., Kwon T.O., Jeong S.I., Jang S.I. (2013). Antioxidant effect of astragalin isolated from the leaves of Morus alba L. against free radical-induced oxidative hemolysis of human red blood cells. Arch. Pharm. Res., 36: 912–917.Search in Google Scholar

Ebrahimi A., Schluesener H. (2012). Natural polyphenols against neurodegenerative disorders: potentials and pitfalls. Ageing. Res. Rev., 11: 329–345.Search in Google Scholar

El-Sayyad H.I. (2015). Cholesterol overload impairing cerebellar function: the promise of natural products. Nutrition, 31: 621–630.Search in Google Scholar

Fu Y., Zhang Q., Xu D.H., Xia H., Cai X., Wang B., Liang J. (2014). Parasiticidal effects of Morus alba root bark extracts against Ichthyophthirius multifiliis infecting grass carp. Dis. Aquat. Organ., 108: 129–136.Search in Google Scholar

Ganzon J.G., Chen L.G., Wang C.C. (2018). 4-O-caffeoylquinic acid as an antioxidant marker for mulberry leaves rich in phenolic compounds. J. Food Drug. Anal., 26: 985–993.Search in Google Scholar

Hao J.Y., Wan Y., Yao X.H., Zhao W.G., Hu R.Z., Chen C., Li L., Zhang D.Y., Wu G.H. (2018). Effect of different planting areas on the chemical compositions and hypoglycemic and antioxidant activities of mulberry leaf extracts in Southern China. PLoS One, 13(6):e198072.Search in Google Scholar

He X., Fang J., Ruan Y., Wang X., Sun Y., Wu N., Zhao Z., Chang Y., Ning N., Guo H., Huang L. (2018). Structures, bioactivities and future prospective of polysaccharides from Morus alba (white mulberry): A review. Food Chem., 245: 899–910.Search in Google Scholar

Hou J., He S., Ling M., Li W., Dong R., Pan Y., Zheng Y. (2010). A method of extracting ginsenosides from Panax ginseng by pulsed electric field. J. Sep. Sci., 33: 2707–2713.Search in Google Scholar

Kandylis K., Hadjigeorgiou I., Harizanis P. (2009). The nutritive value of mulberry leaves (Morus alba) as a feed supplement for sheep. Trop. Anim. Health Prod., 41: 17–24.Search in Google Scholar

Kaviraj A., Mondal K., Mukhopadhyay P.K., Turchini G.M. (2013). Impact of fermented mulberry leaf and fish offal in diet formulation of Indian major carp (Labeo rohita). Proc. Zoological Society (Calcutta), 66: 64–73.Search in Google Scholar

Komolka K., Bochert R., Franz G.P., Kaya Y., Pfuhl R., Grunow B. (2020). Determination and comparison of physical meat quality parameters of Percidae and Salmonidae in aquaculture. Foods, 9(4).10.3390/foods9040388723080532230897Search in Google Scholar

Kong L., Yang C., Dong L., Diao Q., Si B., Ma J., Tu Y. (2019). Rumen fermentation characteristics in pre- and post-weaning calves upon feeding with mulberry leaf flavonoids and Candida tropicalis individually or in combination as a supplement. Animals, 9: 990.Search in Google Scholar

Kwon D.H., Cheon J.M., Choi E.O., Jeong J.W., Lee K.W., Kim K.Y., Kim S.G., Kim S., Hong S.H., Park C., Hwang H.J., Choi Y.H. (2016). The immunomodulatory activity of Mori folium, the leaf of Morus alba L., in RAW 264.7 macrophages in vitro. J. Cancer Prev., 21: 144–151.Search in Google Scholar

Kwon D.H., Jeong J.W., Choi E.O., Lee H.W., Lee K.W., Kim K.Y., Kim S.G., Hong S.H., Kim G.Y., Park C., Hwang H.J., Son C.G., Choi Y.H. (2017). Inhibitory effects on the production of inflammatory mediators and reactive oxygen species by Mori folium in lipopolysaccharide- stimulated macrophages and zebrafish. An. Acad. Bras. Cienc., 89: 661–674.Search in Google Scholar

Li Y., Zhang X., Liang C., Hu J., Yu Z. (2018). Safety evaluation of mulberry leaf extract: Acute, subacute toxicity and genotoxicity studies. Regul. Toxicol. Pharmacol., 95: 220–226.Search in Google Scholar

Liang J.H., Fu Y.W., Zhang Q.Z., Xu D.H., Wang B., Lin D.J. (2015). Identification and effect of two flavonoids from root bark of Morus alba against Ichthyophthirius multifiliis in grass carp. J. Agric. Food Chem., 63: 1452–1459.Search in Google Scholar

Liang L., Wu X., Zhu M., Zhao W., Li F., Zou Y., Yang L. (2012). Chemical composition, nutritional value, and antioxidant activities of eight mulberry cultivars from China. Pharmacon. Mag., 8: 215–224.Search in Google Scholar

Lin W.C., Lee M.T., Chang S.C., Chang Y.L., Shih C.H., Yu B., Lee T.T. (2017). Effects of mulberry leaves on production performance and the potential modulation of antioxidative status in laying hens. Poultry Sci., 96: 1191–1203.Search in Google Scholar

Liu C.G., Ma Y.P., Zhang X.J. (2017). Effects of mulberry leaf polysaccharide on oxidative stress in pancreatic beta-cells of type 2 diabetic rats. Eur. Rev. Med. Pharmacol. Sci., 21: 2482–2488.Search in Google Scholar

Liu Y., Li Y., Peng Y., He J., Xiao D., Chen C., Li F., Huang R., Yin Y. (2019 a). Dietary mulberry leaf powder affects growth performance, carcass traits and meat quality in finishing pigs. J. Anim. Physiol. Anim. Nutr. (Berlin), 103: 1934–1945.10.1111/jpn.1320331478262Search in Google Scholar

Livak K.J., Schmittgen T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25: 402–408.Search in Google Scholar

Ma Q., Santhanam R.K., Xue Z., Guo Q., Gao X., Chen H. (2018). Effect of different drying methods on the physicochemical properties and antioxidant activities of mulberry leaves polysaccharides. Int. J. Biol. Macromol., 119: 1137–1143.Search in Google Scholar

Mahmoud E.A., El-Sayed B.M., Mahsoub Y.H., El-Murr A., Neamat-Allah A. (2020). Effect of Chlorella vulgaris enriched diet on growth performance, hemato-immunological responses, antioxidant and transcriptomics profile disorders caused by deltamethrin toxicity in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol., 102: 422–429.Search in Google Scholar

Miao W.G., Tang C., Ye Y., Quinn R.J., Feng Y. (2019). Traditional Chinese medicine extraction method by ethanol delivers drug-like molecules. Chin. J. Nat. Med., 17: 713–720.Search in Google Scholar

Mondal K., Kaviraj A., Mukhopadhyay P.K. (2015). Growth performance of Indian minor carp Labeo bata fed varying inclusions of fermented fish-offal and mulberry leaf meal based-diets. Iran. J. Fish. Sci., 14: 567–582.Search in Google Scholar

Neamat-Allah A.N.F., El-Murr A.E.I., Abd El-Hakim Y. (2019). Dietary supplementation with low molecular weight sodium alginate improves growth, haematology, immune reactions and resistance against Aeromonas hydrophila in Clarias gariepinus. Aquac. Res., 50: 1547–1556.Search in Google Scholar

Neamat-Allah A.N.F., Abd El Hakim Y., Mahmoud E.A. (2020). Alleviating effects of β-glucan in Oreochromis niloticus on growth performance, immune reactions, antioxidant, transcriptomics disorders and resistance to Aeromonas sobria caused by atrazine. Aquac. Res., 51: 1801–1812.Search in Google Scholar

Neamat-Allah A.N.F., Mahsoub Y.H., Mahmoud E.A. (2021 a). The potential benefits of dietary β-glucan against growth retardation, immunosuppression, oxidative stress and expression of related genes and susceptibility to Aeromonas hydrophila challenge in Oreochromis niloticus induced by herbicide pendimethalin. Aquac. Res., 52: 518–528.10.1111/are.14910Search in Google Scholar

Neamat-Allah A., Mahmoud E.A., Mahsoub Y. (2021 b). Effects of dietary white mulberry leaves on hemato-biochemical alterations, immunosuppression and oxidative stress induced by Aeromonas hydrophila in Oreochromis niloticus. Fish Shellfish Immunol., 108: 147–156.10.1016/j.fsi.2020.11.02833301933Search in Google Scholar

Oliviero F., Scanu A., Zamudio-Cuevas Y., Punzi L., Spinella P. (2018). Anti-inflammatory effects of polyphenols in arthritis. J. Sci. Food. Agric., 98: 1653–1659.Search in Google Scholar

Passos C.P., Coimbra M.A. (2013). Microwave superheated water extraction of polysaccharides from spent coffee grounds. Carbohydr. Polym., 94: 626–633.Search in Google Scholar

Petracci M., Baeza E. (2011). Harmonization of methodologies for the assessment of poultry meat quality features. World Poultry Sci. J., 67: 417–418.Search in Google Scholar

Qaisrani S.N., Moquet P.C., van Krimpen M.M., Kwakkel R.P., Verstegen M.W., Hendriks W.H. (2014). Protein source and dietary structure influence growth performance, gut morphology, and hindgut fermentation characteristics in broilers. Poultry Sci., 93: 3053–3064.Search in Google Scholar

Sheikhlar A., Alimon A.R., Daud H., Saad C.R., Webster C.D., Meng G.Y., Ebrahimi M. (2014). White mulberry (Morus alba) foliage methanolic extract can alleviate Aeromonas hydrophila infection in African catfish (Clarias gariepinus). Sci. World J., 2014: 592709.Search in Google Scholar

Sheikhlar A., Goh Y.M., Alimon R., Ebrahimi M. (2017). Antioxidative effects of mulberry foliage extract in African catfish diet. Aquac. Res., 48: 4409–4419.Search in Google Scholar

Wang W., Zu Y., Fu Y., Efferth T. (2012). In vitro antioxidant and antimicrobial activity of extracts from Morus alba L. leaves, stems and fruits. Am. J. Chin. Med., 40: 349–356.Search in Google Scholar

Wei X., Chen M., Xiao J., Liu Y., Yu L., Zhang H., Wang Y. (2010). Composition and bioactivity of tea flower polysaccharides obtained by different methods. Carbohydr. Polym., 79: 418–422.Search in Google Scholar

Xiong X., Li H., Qiu N., Su L., Huang Z., Song L., Wang J. (2020). Bioconcentration and depuration of cadmium in the selected tissues of rare minnow (Gobiocypris rarus) and the effect of dietary mulberry leaf supplementation on depuration. Environ. Toxicol. Pharmacol., 73: 103278.Search in Google Scholar

Yu Y., Ye H., Wu D., Shi H., Zhou X. (2019). Chemoenzymatic quantification for monitoring unpurified polysaccharide in rich medium. Appl. Microbiol. Biotechnol., 103: 7635–7645.Search in Google Scholar

Zhao X., Yang R., Bi Y., Bilal M., Kuang Z., Iqbal H., Luo Q. (2019). Effects of dietary supplementation with mulberry (Morus alba L.) leaf polysaccharides on immune parameters of weanling pigs. Animals (Basel), 10(1).Search in Google Scholar

Zhou J., Yuan X., Li L., Zhang T., Wang B. (2017). Comparison of different methods for extraction of Cinnamomi ramulus: yield, chemical composition and in vitro antiviral activities. Nat. Prod. Res., 31: 2909–2913.Search in Google Scholar

Zou Y., Liao S., Shen W., Liu F., Tang C., Chen C.Y., Sun Y. (2012). Phenolics and antioxidant activity of mulberry leaves depend on cultivar and harvest month in Southern China. Int. J. Mol. Sci., 13: 16544–16553.Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo