1. bookVolumen 22 (2022): Edición 2 (April 2022)
Detalles de la revista
License
Formato
Revista
eISSN
2300-8733
Primera edición
25 Nov 2011
Calendario de la edición
4 veces al año
Idiomas
Inglés
access type Acceso abierto

Epigenetic states of genes controlling immune responsiveness in bovine chronic mastitis

Publicado en línea: 12 May 2022
Volumen & Edición: Volumen 22 (2022) - Edición 2 (April 2022)
Páginas: 575 - 581
Recibido: 25 Mar 2021
Aceptado: 29 Jul 2021
Detalles de la revista
License
Formato
Revista
eISSN
2300-8733
Primera edición
25 Nov 2011
Calendario de la edición
4 veces al año
Idiomas
Inglés
Abstract

Mastitis is a common disease in dairy cows, causing substantial economic losses. The leading cause of elevated milk somatic cell count (SC), which is the best indicator for detecting mastitis, is the invasion of pathogens. A major pathogen responsible for bovine mastitis is Staphylococcus aureus, a member of the coagulase-positive staphylococci. Some strains of coagulase-negative staphylococci can also be a cause of clinical or subclinical mastitis. Our study used bisulfite sequencing PCR (BSP) to detect the methylation status of nine candidate genes (CCL2, HCK, F11R, CD8A, PDIA3, LGMN, HSPA1A, IL18 and NFKBIA). We investigated the mechanisms associated with overexpression of these genes, in the mammary gland secretory tissue of cows diagnosed with mastitis and infected with coagulase-positive or coagulase-negative staphylococci. The results showed no changes at the DNA methylation level between the mastitis (CoPS and CoNS) and control groups (H), except for in the HCK region, where the observed differences between the CoPS and H groups were statistically significant. The low methylation level of the CpG sequence seems not to correspond to the previously observed increased activity of these genes, suggesting that mechanisms other than DNA methylation may control mRNA expression at the analyzed loci.

Keywords

Al Akeel R. (2013). Role of epigenetic reprogramming of host genes in bacterial pathogenesis. Saudi J. Biol. Sci., 20: 305–309.Search in Google Scholar

Bagnicka E., Kawecka E., Pawlina-Tyszko K., Kapusta A., Zalewska M., Kościuczuk E., Ząbek T. (2021). MicroRNA expression profile in bovine mammary gland secretory tissue parenchyma infected by coagulase-positive or coagulase-negative staphylococci. Vet. Res., 52: 41.Search in Google Scholar

Bostedt H., Boryczko Z., Scheid T. (2001). Diagnostyka i terapia ostrych postaci zapalenia gruczołu mlekowego u krów (in Polish). Życie Wet., 76: 477–479.Search in Google Scholar

Bradley A.J. (2002). Bovine mastitis: an evolving disease. Vet. J., 164: 116–128.Search in Google Scholar

Carr M.W., Roth S.J., Luther E., Rose S.S., Springer T.A. (1994). Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc. Natl. Acad. Sci. USA, 91: 3652–3656.Search in Google Scholar

Chang G., Petzl W., Vanselow J., Günther J., Shen X., Seyfert H.M. (2015). Epigenetic mechanisms contribute to enhanced expression of immune response genes in the liver of cows after experimentally induced Escherichia coli mastitis. Vet. J., 203: 339–341.Search in Google Scholar

Dall E., Brandstetter H. (2016). Structure and function of legumain in health and disease. Biochimie, 122: 126–150.Search in Google Scholar

Fijałkowski K., Czernomysy-Furowicz D., Ferlas M. (2008). Staphylococcus aureus kontra układ immunologiczny (in Polish). Post. Mikrobiol., 47: 497–501.Search in Google Scholar

Gibney E.R., Nolan C.M. (2010). Epigenetics and gene expression. Heredity (Edinb.), 105: 4–13.Search in Google Scholar

Guiet R., Poincloux R., Castandet J., Marois L., Labrousse A., Le Cabec V., Maridonneau-Parini I. (2008). Hematopoietic cell kinase (Hck) isoforms and phagocyte duties – from signaling and actin reorganization to migration and phagocytosis. Eur. J. Cell Biol., 87: 527–542.Search in Google Scholar

Hagnestam-Nielsen C., Emanuelson U., Berglund B., Strandberg E. (2009). Relationship between somatic cell count and milk yield in different stages of lactation. J. Dairy Sci., 92: 3124–3133.Search in Google Scholar

Hall T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser., 41: 95–98.Search in Google Scholar

Hinchs D., Bennewitz J., Stamer E., Junge W., Kalm E., Thaller G. (2011). Genetic analysis of mastitis data with different models. J. Dairy Sci., 94: 471–478.Search in Google Scholar

Huang J., Luo G., Zhang Z., Wang X., Ju Z., Qi C., Zhang Y., Wang C., Li R., Li J., Yin W., Xu Y., Moisá S.J., Loor J.J., Zhong J. (2014). iTRAQ-proteomics and bioinformatics analyses of mammary tissue from cows with clinical mastitis due to natural infection with Staphylococci aureus. BMC Genomics, 15: 839.Search in Google Scholar

Ju Z., Jiang Q., Wang J., Wang X., Yang C., Sun Y., Zhang Y., Wang C., Gao Y., Wei X., Hou M., Huang J. (2020). Genome-wide methylation and transcriptome of blood neutrophils reveal the roles of DNA methylation in affecting transcription of protein-coding genes and miRNAs in E. coli-infected mastitis cows. BMC Genomics, 21: 102.Search in Google Scholar

Kościuczuk E.M., Lisowski P., Jarczak J., Krzyżewski J., Zwierzchowski L., Bagnicka E. (2014). Expression patterns of β-defensin and cathelicidin genes in parenchyma of bovine mammary gland infected with coagulase-positive or coagulase-negative Staphylococci. BMC Vet. Res., 10: 246.Search in Google Scholar

Kościuczuk E.M., Lisowski P., Jarczak J., Majewska A., Rzewuska M., Zwierzchowski L., Bagnicka E. (2017). Transcriptome profiling of Staphylococci-infected cow mammary gland parenchyma. BMC Vet. Res., 13: 161.Search in Google Scholar

Leakey T., Zielinski J., Siegfried R.N., Siegel E.R., Fan C.Y., Cooney C.A. (2008). A simple algorithm for quantifying DNA methylation levels on multiple independent CpG sites in bisulfite genomic sequencing electropherograms. Nucleic Acids Res., 36: e64.Search in Google Scholar

Leitner G., Chaffer M., Krifucks O., Glickman A., Ezra E., Saran A. (2000). Milk leukocyte populations in heifers free from udder infection. J. Vet. Med. B. Infect. Dis. Vet. Public Health, 47: 133–138.Search in Google Scholar

Malinowski E., Lassa H., Kłossowska A., Smulski S., Markiewicz H., Kaczmarowski M. (2006). Etiological agents of dairy cows’ mastitis in western part of Poland. Pol. J. Vet. Sci., 9: 191–194.Search in Google Scholar

Mao Y.J., Zhu X.R., Li R., Chen D., Xin S.Y., Zhu Y.H., Liao X.X., Wang X.L., Zhang H.M., Yang Z.P., Yang L.G. (2015). Methylation analysis of CXCR1 in mammary gland tissue of cows with mastitis induced by Staphylococcus aureus. Genet. Mol. Res., 14: 12606–12615.Search in Google Scholar

Miceli M.C., Parnes J.R. (1991). The roles of CD4 and CD8 in T cell activation. Semin. Immunol., 3: 133–141.Search in Google Scholar

Ogorevc J., Kunej T., Razpet A., Dovc P. (2009). Database of cattle candidate genes and genetic markers for milk production and mastitis. Anim. Genet., 40: 832–851.Search in Google Scholar

Oviedo-Boyso J., Valdez-Alarcón J.J., Cajero-Juárez M., Ochoa-Zarzosa A., López-Meza J.E., Bravo-Patiño A., Baizabal-Aguirre V.M. (2007). Innate immune response of bovine mammary gland to pathogenic bacteria responsible for mastitis. J. Inf. Secur., 54: 399–409.Search in Google Scholar

Poh A.R., O’Donoghue R.J., Ernst M. (2015). Hematopoietic cell kinase (HCK) as a therapeutic target in immune and cancer cells. Oncotarget, 6: 15752–15771.Search in Google Scholar

R Development Core Team (2011). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/Search in Google Scholar

Rainard P., Cunha P., Gilbert F.B. (2016). Innate and adaptive immunity synergize to trigger inflammation in the mammary gland. PLoS One, 11:e0154172.Search in Google Scholar

Singh K., Molenaar A.J., Swanson K.M., Stelwagen K. (2010). DNA methylation is associated with a suppression of aS1-casein gene expression during involution and infection of the bovine mammary gland. IDF World Dairy Summit, Auckland.Search in Google Scholar

Song M.Y., He Y.H., Zhou H.K., Zhang Y., Yu Y. (2016). Combined analysis of DNA methylome and transcriptome reveal novel candidate genes with susceptibility to bovine Staphylococcus aureus subclinical mastitis. Sci. Rep., 6: 29390.Search in Google Scholar

Swanson K.M., Stelwagen K., Dobson J., Henderson H.V., Davis S.R., Farr V.C., Singh K. (2009). Transcriptome profiling of Streptococcus uberis-induced mastitis reveals fundamental differences between immune gene expression in the mammary gland and in a primary cell culture model. J. Dairy. Sci., 92: 117–129.Search in Google Scholar

Thompson-Crispi K., Atalla H., Miglior F., Mallard B.A. (2014). Bovine mastitis: frontiers in immunogenetics. Front Immunol., 5: 493.Search in Google Scholar

Vanselow J., Yang W., Herrmann J., Zerbe H., Schuberth H.J., Petzl W., Tomek W., Seyfert H.M. (2006). DNA-remethylation around a STAT5-binding enhancer in the alphaS1-casein promoter is associated with abrupt shutdown of alphaS1-casein synthesis during acute mastitis. J. Mol. Endocrinol., 37: 463–477.Search in Google Scholar

Viguier C., Arora S., Gilmartin N., Welbeck K., O’Kennedy R. (2009). Mastitis detection: current trends and future perspectives. Trends Biotechnol., 27: 486–493.Search in Google Scholar

Wang D., Wei Y., Shi L., Khan M.Z., Fan L., Wang Y., Yu Y. (2019). Genome-wide DNA methylation pattern in a mouse model reveals two novel genes associated with Staphylococcus aureus mastitis. Asian-Australas. J. Anim. Sci., 15: 203–211.Search in Google Scholar

Wang X.S., Zhang Y., He Y.H., Ma P.P., Fan L.J., Wang Y.C., Zhang Y.I., Sun D.X., Zhang S.L., Wang C.D., Song J.Z., Yu Y. (2013). Aberrant promoter methylation of the CD4 gene in peripheral blood cells of mastitic dairy cows. Genet. Mol. Res., 12: 6228–6239.Search in Google Scholar

Watts L.J. (1988). Etiological agents of bovine mastitis. Vet. Microbiol., 16: 41–66.Search in Google Scholar

Xu L.L., Warren M.K., Rose W.L., Gong W., Wang J.M. (1996). Human recombinant monocyte chemotactic protein and other C-C chemokines bind and induce directional migration of dendritic cells in vitro. J. Leukoc. Biol., 60: 365–371.Search in Google Scholar

Ząbek T., Semik-Gurgul E., Ropka-Molik K., Szmatoła T., Kawecka-Grochocka E., Zalewska M., Kościuczuk E., Wnuk M., Bagnicka E. (2020). Locus-specific interrelations between gene expression and DNA methylation patterns in bovine mammary gland infected by coagulase-positive and coagulase-negative staphylococci. J. Dairy Sci., 103: 10689–10695.Search in Google Scholar

Zhang Y., Wang X., Jiang Q., Hao H., Ju Z., Yang C., Sun Y., Wang C., Zhong J., Huang J., Zhu H. (2018). DNA methylation rather than single nucleotide polymorphisms regulates the production of an aberrant splice variant of IL6R in mastitic cows. Cell Stress Chaperones, 23: 617–628.Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo