1. bookVolumen 22 (2022): Edición 3 (July 2022)
Detalles de la revista
License
Formato
Revista
eISSN
2300-8733
Primera edición
25 Nov 2011
Calendario de la edición
4 veces al año
Idiomas
Inglés
access type Acceso abierto

Effects of dietary Gracilaria persica on the intestinal microflora, thyroid hormones, and resistance against Aeromonas hydrophila in Persian sturgeon (Acipenser persicus)

Publicado en línea: 19 Jul 2022
Volumen & Edición: Volumen 22 (2022) - Edición 3 (July 2022)
Páginas: 1057 - 1062
Recibido: 05 Aug 2021
Aceptado: 25 Nov 2021
Detalles de la revista
License
Formato
Revista
eISSN
2300-8733
Primera edición
25 Nov 2011
Calendario de la edición
4 veces al año
Idiomas
Inglés
Abstract

Red seaweeds have several biomedical derivatives making them healthy additives for the aquaculture industry. Previously we reported enhanced growth performance, feed utilization, and immunity of Persian sturgeon treated with Gracilaria gracilis. Herein, we investigated the effects of G. gracilis on the intestinal microflora, thyroid hormones, and resistance against Aeromonas hydrophila in Persian sturgeon. Fish fed G. gracilis at 0, 2.5, 5, and 10 g/kg for eight weeks, then challenged with A. hydrophila for ten days. The results showed that the total bacterial count in the fish intestines had no meaningful differences among the groups of fish fed varying levels of G. persica (P˃0.05). Fish fed 10 g/kg of G. persica had a higher lactic acid bacteria (LAB) count than fish fed 0, 2.5, and 5 g/kg (P<0.05). Serum thyroid-stimulating hormone (TSH) showed higher levels in fish treated with 2.5 and 5 g/kg of G. persica than the other groups (P<0.05). Besides, fish fed 2.5 g/kg G. persica had higher thyroxine (T4) and triiodothyronine (T3) levels than the other groups (P<0.05). At the end of the challenge test, the highest mortality was seen in the fish fed the G. persica free diet. In summary, Persian sturgeon treated G. gracilis had improved intestinal microflora, thyroid hormones, and resistance against A. hydrophila.

Keywords

Adel M., Dawood M.A.O., Gholamhosseini A., Sakhaie F., Banaee M. (2021 a). Effect of the extract of lemon verbena (Aloysia citrodora) on the growth performance, digestive enzyme activities, and immune-related genes in Siberian sturgeon (Acipenser baerii). Aquaculture, 541: 736797.10.1016/j.aquaculture.2021.736797 Search in Google Scholar

Adel M., Omidi A.H., Dawood M.A.O., Karimi B., Shekarabi S.P.H. (2021 b). Dietary Gracilaria persica mediated the growth performance, fillet colouration, and immune response of Persian sturgeon (Acipenser persicus). Aquaculture, 530: 735950.10.1016/j.aquaculture.2020.735950750224232981978 Search in Google Scholar

An B.N.T., Anh N.T.N. (2020). Co-culture of Nile tilapia (Oreochromis niloticus) and red seaweed (Gracilaria tenuistipitata) under different feeding rates: effects on water quality, fish growth and feed efficiency. J. Appl. Phycol., 32: 2031–2040. Search in Google Scholar

Aramli M.S., Kamangar B., Nazari R.M. (2015). Effects of dietary β-glucan on the growth and innate immune response of juvenile Persian sturgeon, Acipenser persicus. Fish Shellfish Immunol., 47: 606–610. Search in Google Scholar

Baharloei M., Heidari B., Zamani H., Hadavi M. (2020). Effects of Pro-Tex® on the expression of Hsp70 gene and immune response parameters in the Persian sturgeon fingerlings, Acipenser persicus, infected with Aeromonas hydrophila. J. Appl. Ichthyol., 36: 393–401. Search in Google Scholar

Bhat I.A., Rather M.A., Saha R., Ganie P.A., Sharma R. (2017). Identification and expression analysis of thyroid-stimulating hormone receptor (TSHR) in fish gonads following LHRH Treatment. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci., 87: 719–726. Search in Google Scholar

Blanton M.L., Specker J.L. (2007). The hypothalamic-pituitary-thyroid (HPT) axis in fish and its role in fish development and reproduction. Crit. Rev. Toxicol., 37:97–115. Search in Google Scholar

Bouwmeester M.M., Goedknegt M.A., Poulin R., Thieltges D.W. (2021). Collateral diseases: Aquaculture impacts on wildlife infections. J. Appl. Ecol., 58: 453–464. Search in Google Scholar

Dawood M.A.O. (2021) Nutritional immunity of fish intestines: important insights for sustainable aquaculture. Rev. Aquac.,13: 642–663.10.1111/raq.12492 Search in Google Scholar

Dawood M.A.O., Koshio S. (2020). Application of fermentation strategy in aquafeed for sustainable aquaculture. Rev. Aquac., 12: 987–1002. Search in Google Scholar

Dawood M.A.O., Koshio S., Ishikawa M., Yokoyama S. (2016). Effects of dietary inactivated Pediococcus pentosaceus on growth performance, feed utilization and blood characteristics of red sea bream, Pagrus major juvenile. Aquac. Nutr., 22: 923–932. Search in Google Scholar

Dawood M.A.O., El Basuini M.F., Zaineldin A.I., Yilmaz S., Hasan M.T., Ahmadifar E., El Asely A.M., Abdel-Latif H.M.R., Alagawany M., Abu-Elala N.M., Van Doan H., Sewilam H. (2021). Antiparasitic and antibacterial functionality of essential oils: an alternative approach for sustainable aquaculture. Pathogens, 10: 185. Search in Google Scholar

FAO (2020). The state of world fisheries and aquaculture 2020. Sustainability in action. Rome. Francavilla M., Franchi M., Monteleone M., Caroppo C. (2013). The red seaweed Gracilaria gracilis as a multi-products source. Mar Drugs., 11: 3754–3776.10.3390/md11103754382613424084791 Search in Google Scholar

Galappaththi E.K., Ichien S.T., Hyman A.A., Aubrac C.J., Ford J.D. (2020). Climate change adaptation in aquaculture. Rev. Aquac., 12: 2160–2176. Search in Google Scholar

Hayatgheib N., Moreau E., Calvez S., Lepelletier D., Pouliquen H.J.A.I. (2020). A review of functional feeds and the control of Aeromonas infections in freshwater fish. Aquac. Int., 1–41.10.1007/s10499-020-00514-3 Search in Google Scholar

Hindu S.V., Chandrasekaran N., Mukherjee A., Thomas J. (2019). A review on the impact of seaweed polysaccharide on the growth of probiotic bacteria and its application in aquaculture. Aquac. Int., 27: 227–238. Search in Google Scholar

Hoseinifar S.H., Yousefi S., Capillo G., Paknejad H., Khalili M., Tabarraei A., Van Doan H., Spanò N., Faggio C. (2018). Mucosal immune parameters, immune and antioxidant defense-related genes expression and growth performance of zebrafish (Danio rerio) fed on Gracilaria gracilis powder. Fish Shellfish Immunol., 83: 232–237. Search in Google Scholar

Hoseinifar S.H., Shakouri M., Doan H.V., Shafiei S., Yousefi M., Raeisi M., Yousefi S., Harikrishnan R., Reverter M. (2020). Dietary supplementation of lemon verbena (Aloysia citrodora) improved immunity, immune-related genes expression and antioxidant enzymes in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol., 99: 379–385. Search in Google Scholar

Jafari A., Keramat Amirkolaie A., Oraji H., Kousha M. (2020). Bio-sorption of ammonium ions by dried red marine algae (Gracilaria persica): Application of response surface methodology. Iran. J. Fish. Sci., 19: 1967–1980. Search in Google Scholar

Jeliani Z.Z., Yousefzadi M., Pour J.S., Toiserkani H. (2018). Growth, phytochemicals, and optimal timing of planting Gracilariopsis persica: an economic red seaweed. J. Appl. Phycol., 30: 525–533. Search in Google Scholar

Kari Z.A., Kabir M.A., Mat K., Rusli N.D., Razab M.K.A.A., Ariff N.S.N.A., Edinur H.A., Rahim M.Z.A., Pati S., Dawood M.A.O., Wei L.S. (2021). The possibility of replacing fish meal with fermented soy pulp on the growth performance, blood biochemistry, liver, and intestinal morphology of African catfish (Clarias gariepinus). Aquac. Rep., 21: 100815. Search in Google Scholar

Kari Z.A., Kabir M.A., Dawood M.A.O., Razab M.K.A.A., Ariff N.S.N.A., Sarkar T., Pati S., Edinur H.A., Mat K., Ismail T.A., Wei L.S. (2022). Effect of fish meal substitution with fermented soy pulp on growth performance, digestive enzyme, amino acid profile, and immune-related gene expression of African catfish (Clarias gariepinus). Aquaculture, 546: 737418. Search in Google Scholar

Kiadaliri M., Firouzbakhsh F., Deldar H. (2020). Effects of feeding with red algae (Laurencia caspica) hydroalcoholic extract on antioxidant defense, immune responses, and immune gene expression of kidney in rainbow trout (Oncorhynchus mykiss) infected with Aeromonas hydrophila. Aquaculture, 526: 735361. Search in Google Scholar

Kulshreshtha G., Rathgeber B., MacIsaac J., Boulianne M., Brigitte L., Stratton G., Thomas N.A., Critchley A.T., Hafting J., Prithiviraj B. (2017). Feed supplementation with red seaweeds, Chondrus crispus and Sarcodiotheca gaudichaudii, reduce Salmonella enteritidis in laying hens. Front. Microbiol., 8: 2991–3001. Search in Google Scholar

Lim K.C., Yusoff F.M., Shariff M., Kamarudin M.S. (2018). Astaxanthin as feed supplement in aquatic animals. Rev. Aquac., 10: 738–773. Search in Google Scholar

López-Pedrouso M., Lorenzo J.M., Cantalapiedra J., Zapata C., Franco J.M., Franco D. (2020). Chapter five – aquaculture and by-products: Challenges and opportunities in the use of alternative protein sources and bioactive compounds. In: Advances in food and nutrition research, J.M. Lorenzo, F.J. Barba (eds). Academic Press, 92: 127–185. Search in Google Scholar

Lulijwa R., Rupia E.J., Alfaro A.C. (2020). Antibiotic use in aquaculture, policies and regulation, health and environmental risks: a review of the top 15 major producers. Rev. Aquac., 12: 640–663. Search in Google Scholar

Mohan K., Ravichandran S., Muralisankar T., Uthayakumar V., Chandirasekar R., Seedevi P., Abirami R.G., Rajan D.K. (2019). Application of marine-derived polysaccharides as immunostimulants in aquaculture: A review of current knowledge and further perspectives. Fish Shellfish Immunol., 86: 1177–1193. Search in Google Scholar

Mzula A., Wambura P.N., Mdegela R.H., Shirima G.M. (2019). Current state of modern biotechnological-based Aeromonas hydrophila vaccines for aquaculture: A systematic review. Biomed Res. Int., 1: 3768948. Search in Google Scholar

Peixoto M.J., Salas-Leitón E., Pereira L.F., Queiroz A., Magalhães F., Pereira R., Abreu H., Reis P.A., Gonçalves J.F.M., de Almeida Ozório R.O. (2016). Role of dietary seaweed supplementation on growth performance, digestive capacity and immune and stress responsiveness in European seabass (Dicentrarchus labrax). Aquac. Rep. 3: 189–197. Search in Google Scholar

Safavi S.V., Kenari A.A., Tabarsa M., Esmaeili M. (2019). Effect of sulfated polysaccharides extracted from marine macroalgae (Ulva intestinalis and Gracilariopsis persica) on growth performance, fatty acid profile, and immune response of rainbow trout (Oncorhynchus mykiss). J. Appl. Phycol., 31: 4021–4035. Search in Google Scholar

Sallam K.I. (2007). Antimicrobial and antioxidant effects of sodium acetate, sodium lactate, and sodium citrate in refrigerated sliced salmon. Food Control., 18: 566–575. Search in Google Scholar

Sanjeewa K.KA., Kang N., Ahn G., Jee Y. Kim Y.T., Jeon Y.J. (2018). Bioactive potentials of sulfated polysaccharides isolated from brown seaweed Sargassum spp in related to human health applications: a review. Food Hydrocoll., 81: 200–208. Search in Google Scholar

Thépot V., Campbell A.H., Rimmer M.A., Paul N.A. (2021). Meta-analysis of the use of seaweeds and their extracts as immunostimulants for fish: a systematic review. Rev. Aquac., 13: 907–933. Search in Google Scholar

Walsh A.M., Sweeney T., O’Shea C.J., Doyle D.N., O’Doherty J.V. (2013). Effect of dietary laminarin and fucoidan on selected microbiota, intestinal morphology and immune status of the newly weaned pig. Br. J. Nutr., 110: 1630–1638. Search in Google Scholar

Wijnana A., Adhika P., Kasanah N. (2018). Bioactivity of red seaweed Gracilaria arcuata against Aeromonas hydrophila and Vibrio sp. J. Nat. Prod., 8: 147–152. Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo